
CS 425 / ECE 428

Distributed Systems

Fall 2024

Aishwarya Ganesan

w/ Indranil Gupta (Indy)

Lecture 13: Snapshots
All slides © IG

Announcements

• HW1, HW2 solutions released

• MP1, MP2 Recommended solutions released

• Midterm Thursday 10/10

– Written, in class

• Locations:

– XX: if your last name starts with A-L

• TBD

– TBD: if your last name starts with M-Z

• Material: Lecture 1-12

• Practice Midterm Released

2

Here’s a Snapshot

Wikimedia commons, heads of state 1889

3

G7 2022

Distributed Snapshot

• More often, each country’s representative

is sitting in their respective capital, and

sending messages to each other (say

emails).

• How do you calculate a “global snapshot”

in that distributed system?

• What does a “global snapshot” even

mean?

4

In the Cloud

• In a cloud: each application or service is running on

multiple servers

• Servers handling concurrent events and interacting with

each other

• The ability to obtain a “global photograph” of the system

is important

• Some uses of having a global picture of the system

– Checkpointing: can restart distributed application on failure

– Garbage collection of objects: objects at servers that don’t have

any other objects (at any servers) with pointers to them

– Deadlock detection: Useful in database transaction systems

– Termination of computation: Useful in batch computing systems

like Folding@Home, SETI@Home
5

What’s a Global Snapshot?

• Global Snapshot = Global State =

Individual state of each process in the distributed
system

+

Individual state of each communication channel in the
distributed system

• Capture the instantaneous state of each process

• And the instantaneous state of each communication
channel, i.e., messages in transit on the channels

6

Obvious First Solution

• Synchronize clocks of all processes

• Ask all processes to record their states at known time t

• Problems?

– Time synchronization always has error

• Your bank might inform you, “We lost the
state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

– Also, does not record the state of messages in the
channels

• Again: synchronization not required – causality is
enough!

7

Example

Pi

Pj

Cij

Cji

8

Pi

Pj

Cij

Cji

[$1000,

100 iPhones]

[$600,

50 Androids]

[empty]
[empty]

[Global Snapshot 0]

Pi

Pj

Cij

Cji

[$701,

100 iPhones]

[$600,

50 Androids]

[empty]
[$299, Order Android]

[Global Snapshot 1]

Pi

Pj

Cij

Cji

[$701,

100 iPhones]

[$101,

50 Androids]

[$499, Order iPhone]

[Global Snapshot 2]

[$299, Order Android]

Pi

Pj

Cij

Cji

[$1200, 1 iPhone order from Pj,

100 iPhones]

[$101,

50 Androids]

[empty]

[Global Snapshot 3]

[$299, Order Android]

[

($299, Order Android),

(1 iPhone)

]

Pi

Pj

Cij

Cji

[$1200,

99 iPhones]

[$101,

50 Androids]
[Global Snapshot 4]

[empty]

[

(1 iPhone)

]

Pi

Pj

Cij

Cji

[$1200,

99 iPhones]

[$400, 1 Android order from Pi,

50 Androids]
[Global Snapshot 5]

[empty]

[empty]

Pi

Pj

Cij

Cji

[$1200,

99 iPhones]

[$400, 1 Android order from Pi,

50 Androids, 1 iPhone]
[Global Snapshot 6]

[empty]

… and so on …

Moving from State to State

• Whenever an event happens anywhere in the

system, the global state changes

– Process receives message

– Process sends message

– Process takes a step

• State to state movement obeys causality

– Next: Causal algorithm for Global Snapshot

calculation

16

System Model

• Problem: Record a global snapshot (state for each process,

and state for each channel)

• System Model:

– N processes in the system

– There are two uni-directional communication channels between

each ordered process pair : Pj → Pi and Pi → Pj

– Communication channels are FIFO-ordered

• First in First out

– No failure

– All messages arrive intact, and are not duplicated

• Other papers later relaxed some of these assumptions

17

Requirements

• Snapshot should not interfere with normal

application actions, and it should not require

application to stop sending messages

• Each process is able to record its own state

– Process state: Application-defined state or, in the worst

case:

– its heap, registers, program counter, code, etc. (essentially

the coredump)

• Global state is collected in a distributed manner

• Any process may initiate the snapshot

– We’ll assume just one snapshot run for now

18

Chandy-Lamport Global Snapshot Algorithm

• First, Initiator Pi records its own state

• Initiator process creates special messages called “Marker” messages

– Not an application message, does not interfere with application messages

• for j=1 to N except i

Pi sends out a Marker message on outgoing

channel Cij

• (N-1) channels
• Starts recording the incoming messages on each of

the incoming channels at Pi: Cji (for j=1 to N except

i)

19

Chandy-Lamport Global Snapshot Algorithm (2)

Whenever a process Pi receives a Marker message on an incoming channel Cki

• if (this is the first Marker Pi is seeing)

– Pi records its own state first

– Marks the state of channel Cki as “empty”

– for j=1 to N except i

• Pi sends out a Marker message on outgoing channel Cij

– Starts recording the incoming messages on each of the incoming channels at Pi: Cji

(for j=1 to N except i and k)

• else // already seen a Marker message

– Mark the state of channel Cki as all the messages that have arrived on it since

recording was turned on for Cki

20

Chandy-Lamport Global Snapshot Algorithm (3)

The algorithm terminates when

• All processes have received a Marker

– To record their own state

• All processes have received a Marker on all the (N-

1) incoming channels at each

– To record the state of all channels

Then, (if needed), a central server collects all these

partial state pieces to obtain the full global snapshot

21

Example

P2

Time

P1

P3

A B C D E

E F G

H I J

Message
Instruction or Step

Example

22

P1 is Initiator:

• Record local state S1,

• Send out markers

• Turn on recording on channels C21, C31

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• First Marker!

• Record own state as S3

• Mark C13 state as empty

• Turn on recording on other incoming C23

• Send out Markers

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

Duplicate Marker!

State of channel C31 = < >

P2

Time

P1

P3

A B C D E

E F G

H I J

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

C31 = < >

• First Marker!

• Record own state as S2

• Mark C32 state as empty

• Turn on recording on C12

• Send out Markers

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

C31 = < >

• S2

• C32 = < >

• Record C12

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

C31 = < >

• S2

• C32 = < >

• Record C12

• Duplicate!

• C12 = < >

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

C31 = < >

• S2

• C32 = < >

• Record C12

C12 = < >

• Duplicate!

• C21 = <message G→D >

P2

Time

P1

P3

A B C D E

E F G

H I J

S1, Record C21, C31

• S3

• C13 = < >

• Record C23

C31 = < >

• S2

• C32 = < >

• Record C12

C12 = < >

C21 = <message G→D >

• Duplicate!

• C23 = < >

P2

Time

P1

P3

A B C D E

E F G

H I J

S1

• S3

• C13 = < >

C31 = < >

• S2

• C32 = < > C12 = < >

C21 = <message G→D >

• C23 = < >

Algorithm has Terminated

P2

Time

P1

P3

A B C D E

E F G

H I J

S1

S3 C13 = < >

C31 = < >

S2 C32 = < >

C12 = < >

C21 = <message G→D >

C23 = < >

Collect the Global Snapshot Pieces

Next

• Global Snapshot calculated by Chandy-Lamport algorithm is

causally correct

– What?

34

Cuts

• Cut = time frontier at each process and at each channel

• Events at the process/channel that happen before the cut are “in

the cut”

– And happening after the cut are “out of the cut”

35

Consistent Cuts

Consistent Cut: a cut that obeys causality

• A cut C is a consistent cut if and only if:

for (each pair of events e, f in the system)

– Such that event e is in the cut C, and if f → e (f happens-before e)

• Then: Event f is also in the cut C

36

Example

P2

Time

P1

P3

A B C D E

E F G

H I J

Consistent Cut Inconsistent Cut

G → D, but only D is in cut
37

P2

Time

P1

P3

A B C D E

E F G

H I J

S1

• S3

• C13 = < >

C31 = < >

• S2

• C32 = < > C12 = < >

C21 = <message G→D >

• C23 = < >

Our Global Snapshot Example …

• S3

• C13 = < >

• S2

• C32 = < >

• C23 = < >

… is causally correct

P2

Time

P1

P3

A B C D E

E F G

H I J

S1 C31 = < >

C12 = < >

C21 = <message G→D >

Consistent Cut captured by our Global Snapshot Example
39

In fact…

• Any run of the Chandy-Lamport Global Snapshot algorithm creates a

consistent cut

40

Chandy-Lamport Global Snapshot algorithm
creates a consistent cut

Let’s quickly look at the proof

•Let ei and ej be events occurring at Pi and Pj,

respectively such that

– ei → ej (ei happens before ej)

•The snapshot algorithm ensures that

 if ej is in the cut then ei is also in the cut.

• That is: if ej → <Pj records its state>, then

– it must be true that ei → <Pi records its state>.

41

Chandy-Lamport Global Snapshot algorithm
creates a consistent cut

• if ej → <Pj records its state>, then it must be true

that ei → <Pi records its state>.

• By contradiction, suppose ej → <Pj records its state> and

<Pi records its state> → ei

• Consider the path of app messages (through other

processes) that go from ei → ej

• Due to FIFO ordering, markers on each link in above

path will precede regular app messages

• Thus, since <Pi records its state> → ei , it must be true

that Pj received a marker before ej

• Thus ej is not in the cut => contradiction

42

Next

• What is the Chandy-Lamport algorithm used for?

43

“Correctness” in Distributed Systems

• Can be seen in two ways

• Liveness and Safety

• Often confused – it’s important to distinguish from each other

44

Liveness

• Liveness = guarantee that something good will happen, eventually

– Eventually == does not imply a time bound, but if you let the

system run long enough, then …

45

Liveness: Examples

• Liveness = guarantee that something good will happen,

eventually

– Eventually == does not imply a time bound, but if you let the

system run long enough, then …

• Examples in Real World

– Guarantee that “at least one of the atheletes in the 100m final

will win gold” is liveness

– A criminal will eventually be jailed

• Examples in a Distributed System

– Distributed computation: Guarantee that it will terminate

– “Completeness” in failure detectors: every failure is

eventually detected by some non-faulty process

– In Consensus: All processes eventually decide on a value 46

Safety

• Safety = guarantee that something bad will never happen

47

Safety: Examples

• Safety = guarantee that something bad will never happen

• Examples in Real World

– A peace treaty between two nations provides safety

• War will never happen

– An innocent person will never be jailed

• Examples in a Distributed System

– There is no deadlock in a distributed transaction system

– No object is orphaned in a distributed object system

– “Accuracy” in failure detectors

– In Consensus: No two processes decide on different

values 48

Can’t we Guarantee both?

• Can be difficult to satisfy both liveness and safety

in an asynchronous distributed system!

– Failure Detector: Completeness (Liveness) and

Accuracy (Safety) cannot both be guaranteed by

a failure detector in an asynchronous distributed

system

– Consensus: Decisions (Liveness) and correct

decisions (Safety) cannot both be guaranteed by

any consensus protocol in an asynchronous

distributed system

– Very difficult for legal systems (anywhere in

the world) to guarantee that all criminals are

jailed (Liveness) and no innocents are jailed

(Safety) 49

In the language of Global States

• Recall that a distributed system moves from one global state to

another global state, via causal steps

• Liveness w.r.t. a property Pr in a given state S means

– S satisfies Pr, or there is some causal path of global states from S to S’

where S’ satisfies Pr

• Safety w.r.t. a property Pr in a given state S means

S satisfies Pr, and all global states S’ reachable from S also satisfy Pr

50

Using Global Snapshot Algorithm

• Chandy-Lamport algorithm can be used to detect global properties that

are stable

– Stable = once true, stays true forever afterwards

• Stable Liveness examples

– Computation has terminated

• Stable Non-Safety examples

– There is a deadlock

– An object is orphaned (no pointers point to it)

• All stable global properties can be detected using

the Chandy-Lamport algorithm

• Due to its causal correctness 51

Summary

• The ability to calculate global snapshots in a

distributed system is very important

• But don’t want to interrupt running distributed

application

• Chandy-Lamport algorithm calculates global

snapshot

• Obeys causality (creates a consistent cut)

• Can be used to detect stable global properties

• Safety vs. Liveness

52

1. Why does causality suffice for snapshots?

2. With perfectly synchronized clocks, why can’t we take a
perfect snapshot?

3. In the Chandy-Lamport algorithm, if a message is received
before a process takes its snapshot, is the message send event
part of the snapshot? Message receive event?

4. Prove that the Chandy-Lamport Algorithm only creates
consistent cuts.

5. What is the difference between safety and liveness properties? 5

3

Exercises

Announcements

• HW1, HW2 solutions released

• MP1, MP2 Recommended solutions released

• Midterm Thursday 10/10

– Written, in class

• Locations:

– XX: if your last name starts with A-L

• TBD

– TBD: if your last name starts with M-Z

• Material: Lecture 1-12

• Practice Midterm Released

54

	Slide 1
	Slide 2: Announcements
	Slide 3: Here’s a Snapshot
	Slide 4: Distributed Snapshot
	Slide 5: In the Cloud
	Slide 6: What’s a Global Snapshot?
	Slide 7: Obvious First Solution
	Slide 8: Example
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Moving from State to State
	Slide 17: System Model
	Slide 18: Requirements
	Slide 19: Chandy-Lamport Global Snapshot Algorithm
	Slide 20: Chandy-Lamport Global Snapshot Algorithm (2)
	Slide 21: Chandy-Lamport Global Snapshot Algorithm (3)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Algorithm has Terminated
	Slide 33: Collect the Global Snapshot Pieces
	Slide 34: Next
	Slide 35: Cuts
	Slide 36: Consistent Cuts
	Slide 37: Example
	Slide 38: Our Global Snapshot Example …
	Slide 39: … is causally correct
	Slide 40: In fact…
	Slide 41: Chandy-Lamport Global Snapshot algorithm creates a consistent cut
	Slide 42: Chandy-Lamport Global Snapshot algorithm creates a consistent cut
	Slide 43: Next
	Slide 44: “Correctness” in Distributed Systems
	Slide 45: Liveness
	Slide 46: Liveness: Examples
	Slide 47: Safety
	Slide 48: Safety: Examples
	Slide 49: Can’t we Guarantee both?
	Slide 50: In the language of Global States
	Slide 51: Using Global Snapshot Algorithm
	Slide 52: Summary
	Slide 53
	Slide 54: Announcements

