CS 425 l ECE 423

Distributed Systems
Fall 2024

Indranil Gupta (Indy)
w/ Aishwarya Ganesan

Lecture 13: Snapshots All slides © 1G

Announcements

« HW1, HW2 solutions released
 MP3, HW3 coming after midterm
« Midterm Thursday 10/10
— Written, in class
» Locations:
— 1f your last name starts with A-P: CIF 0027/1025

— if your last name starts with Q-Z: Natural History Building, Room 2079
« 1301 W Green Street

— Please arrive 10 minutes before. We start on time, and end on time.
e Material; Lecture 1-12
e Practice Midterm Released

Wikimedia commons, heads of state 1889

lrmarns ssnatad e Fas i DID lnddla

Distributed Snapshot

* More often, each country’s representative
IS sitting In their respective capital, and
sending messages to each other (say
emails).

 How do you calculate a “global snapshot”
In that distributed system?

« What does a “global snapshot” even
mean?

In the Cloud

In a cloud: each application or service is running on
multiple servers

Servers handling concurrent events and interacting with
each other

The ability to obtain a “global photograph” of the system
IS important

Some uses of having a global picture of the system

Checkpointing: can restart distributed application on failure

Garbage collection of objects: objects at servers that don’t have
any other objects (at any servers) with pointers to them

Deadlock detection: Useful in database transaction systems

Termination of computation: Useful in batch computing systems
like Folding@Home, SETI@Home

What's a Global Snapshot?

* Global Snapshot = Global State =
Individual state of each process in the distributed
system
+

Individual state of each communication channel in the
distributed system

« Capture the instantaneous state of each process

 And the instantaneous state of egach communication
channel, i.e., messages in transit on the channels

Obvious First Solution

« Synchronize clocks of all processes
« Ask all processes to record their states at known time t
* Problems?

— Time synchronization always has error

* Your bank might inform you, “We lost the
state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

— Also, does not record the state of messages in the
channels

« Again: synchronization not required — causality is
enough!

(pi)

———

Cij

@[$1ooo

~— 100 i1Phones]

Cij
[empty]

.| Cji
i) [$600,

50 Androids(}
[Global Snapshot 0]

@[$701

— 100 iPhones]

Cij

[empty]
[$299, Order Android]

.| Cji
i) [$600,

50 Androids}
[Global Snapshot 1]

(}ﬁfﬁ$701

— 100 iPhones]

Cij
[$499, Order iPhone]
[$299, Order Android]

. Cji
j) [$101,

50 Androidsg
[Global Snapshot 2]

®[$1200 1 iPhone order from Pj,
—1 100 iPhones]

Cij

_ [empty]
[$299, Order Android]

. Cji
j) [$101,

50 Androidsa]
[Global Snapshot 3]

Cij

|

($299, Order Android),

(1 1IPhone)
]

(}ﬁfﬁ$1zoo

— 199 iIPhones]

[empty]

.| Cji

[$101,

50 Androidsj
[Global Snapshot 4]

@[$1200

Ciij — 99 IPhones]
[[empty]
(1 iIPhone)
] ,— CJi
|) [$400, 1 Android order from Pi,
50 Androidsg
[Global Snapshot 5]

@[mzoo,

Cij 99 IPhones]
[empty]
[empty]
... and so on ...
,— CJi

Pj) [$400, 1 Android order from Pi,

50 Androids, 1 iPhone]
[Global Snapshot 6]

Moving from State to State

* Whenever an event happens anywhere in the
system, the global state changes

— Process receives message
— Process sends message
— Process takes a step
« State to state movement obeys causality

— Next: Causal algorithm for Global Snapshot
calculation

16

System Model

 Problem: Record a global snapshot (state for each process,
and state for each channel)

« System Model:

— N processes in the system

— There are two uni-directional communication channels between
each ordered process pair : Pj = Piand Pi 2 Pj

— Communication channels are FIFO-ordered
« First in First out
— No failure
— All messages arrive intact, and are not duplicated
» Other papers later relaxed some of these assumptions

17

Requirements

« Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

« Each process is able to record its own state

— Process state: Application-defined state or, in the worst
case:

— its heap, registers, program counter, code, etc. (essentially
the coredump)

« Global state is collected in a distributed manner
« Any process may initiate the snapshot

— We’ll assume just one snapshot run for now

18

Chandy-Lamport Global Snapshot Algorithm

» First, Initiator Pi records its own state
« Initiator process creates special messages called “[\Viarker” messages
— Not an application message, does not interfere with application messages

« forj=1to N except i
Pi sends out a Marker message on outgoing
channel C;;

* (N-1) channels
the incoming messages on each of
the incoming channels at Pi: C;; (for j=1 to N except

)

19

Chandy-Lamport Global Snapshot Algorithm (2)

Whenever a process Pi receives a Marker message on an incoming channel C;

« if (this is the first Marker Pi is seeing)
— Pirecords its own state first
— Marks the state of channel Cy; as “empty”
— for j=1to N except i
» Pisends out a Marker message on outgoing channel C;;

the incoming messages on each of the incoming channels at Pi: C;;
(for j=1to N except i and k)

« else // already seen a Marker message

— Mark the state of channel C,; as all the messages that have arrived on it
Cki

20

Chandy-Lamport Global Snapshot Algorithm (3)

The algorithm terminates when
» All processes have received a Marker
— To record their own state

» All processes have received a Marker on all the (N-
1) incoming channels at each

— To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

21

P3

® Instruction or Step
— ~ Message

22

P1

P2

P3

B

P1 is Initiator:

Record local state S1,
Send out markers
Turn on recordlng 0 channels C21,

s

Time

S1, Record C,,, Cy4

B D E
Time

P2 - G
P3 H N J

» First Marker!

» Record own state as S3

« Mark C,;state as empty

* Turn on recording on other incoming C,;
« Send out Markers

P3

S1, Record C,,, Cy4

Ciz=<>
Record C,;

P1

P2

P3

S1, Record C,7C3;

®

Duplicate Marker!
State of channel C3; = <>

D E

R
\ Time
E G R
H/ / / J
 s3
Ciz=<>

Record C,;

P1

P2

P3

ZAVERN

First Marker!

Record own state as S2
Mark C;, state as empty
Turn on recording on Cy,
Send out Markers

P1

P2

P3

S1, Record C21—G@& C31 =<>

S /s

v /

C32—<>

C13 -=- Record C,,

Record C,;

P1

P2

P3

S1, Record C,7Ca,

Cy=<>

& D _E .
Time
G >
——e f J
Vg3 Y « * Duplicate!
e Cp,=<> Cp=<> « Cj=<>
137 e ReeeFd (;H

« Record C,;

P1

P2

P3

» Duplicate!
« Cy= <message G->D>
Sl ReeeFd—GQJ_r—Gg;_L C31 =5

=

ZAVZENN

¢« Cp=<> C12:<>

© Cp=<> « Record-C
« Record C,; =

P1

P2

P3

C,1 = <message G->D>
Sl ReeeFd—GQJ_r—Gg;_L C31 =<>
=

\
\
\
.
\
.
|
.
\
)
)
(] I
|

’ C32—<> C2:<>
° C13:<> +RecordC,,
~—Reeord-C,, Dupllcate!
e Cyph=<>

Algorithm has Terminated | _Cy=<message G3D>
31:<> d

/
/
/
/
/
/
/
/
/
/
/

S \/ “

. 82 ,
. C32—<> Cp=<>

‘ C13—<> j
¢ Cxu=<>

Collect the Global Snapshot Pieces C,, = <message G>D >

C31—<>

NS AL
NEVAVEANY

) 2 Gy ==
58 C= C=<>

Cp=<>

Next

» Global Snapshot calculated by Chandy-Lamport algorithm is
causally correct

— What?

34

« Cut =time frontier at each process and at each channel

« Events at the process/channel that happen before the cut are “in
the cut”

— And happening after the cut are “out of the cut”

35

Consistent Cuts

Consistent Cut: a cut that obeys causality
« Acut Cis a consistent cut if and only if:
for (each pair of events e, f in the system)
— Such that event e is in the cut C, and if f — e (f happens-before e)
« Then: Event fis also in the cut C

36

P1

P2

P3

Example
A B

Consistent Cut

Inconsistent Cut
G -2 D, butonlyDisin cut.

Our Global Snapshot Example ...

C,; = <message G=>D >

S1 C{31 =<
y —A B c D E .
Time
o E F G/)
P3 H , — J
. S3 | ‘

e (C :,<'/> Ci,=<>
—_ 32 ; 12
. Cp=<>

+ Cyu=<>

... is causally correct Cyu= <message G>D >

, Sl Cy=<> |
b1 % B ~. _ (; D E R
ik Time
N
E F G t
P2 y >
g !
e N\
_ \
e 3
="
P3 H D= g SN VR
p 7 33 e S2 §
[] /
! _ * Cyp=<> Cp=<>
S ¢ Cp=<>

Consistent Cut captured by out Global Snapshot Example Cp=<>

In fact...

« Any run of the Chandy-Lamport Global Snapshot algorithm creates a
consistent cut

40

Chandy-Lamport Global Snapshot algorithm

creates a consistent cut

Let’s quickly look at the proof

-Let e; and e; be events occurring at Pi and Pj,
respectively such that

— € 2 ¢ (e;happens before ¢;)
*The snapshot algorithm ensures that
If ¢; Is In the cut then g; is also In the cut.

e Thatis: if e 2 <Pj records its state>, then
— it must be true that e; = <Pi records its state>,

41

Chandy-Lamport Global Snapshot algorithm

creates a consistent cut: Proof

« ife; > <Pjrecords its state>, then it must be true
that e; = <Pi records its state>,

By contradiction, suppose e; > <Pj records its state> and
<Pi records its state> = e,

« Consider the path of app messages (through other
processes) that go from e; = g;

* Due to FIFO ordering, markers on each link in above
path will precede regular app messages

» Thus, since <Pi records its state> - e, , it must be true
that Pj received a marker before e,

e Thus & IS not in the cut => contradiction

42

Next

« What is the Chandy-Lamport algorithm used for?

43

“Correctness” in Distributed Systems

« Can be seen in two ways
« Liveness and Safety
« Often confused — it’s important to distinguish from each other

44

Liveness

« Liveness = guarantee that something good will happen, eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

45

Liveness: Examples

« Liveness = guarantee that something good will happen,
eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

« Examples in Real World

— Guarantee that “at least one of the atheletes in the 100m final
will win gold” is liveness

— A criminal will eventually be jailed
« Examples in a Distributed System
— Distributed computation: Guarantee that it will terminate

“Completeness” in failure detectors: every failure is
eventually detected by some non-faulty process

— In Consensus: All processes eventually decide on a value 46

Safety

 Safety = guarantee that something bad will never happen

47

Safety: Examples

« Safety = guarantee that something bad will never happen
« Examples in Real World

— A peace treaty between two nations provides safety

» War will never happen

— An innocent person will never be jailed
« Examples in a Distributed System

— There is no deadlock in a distributed transaction system

— No object is orphaned in a distributed object system

— “Accuracy” in failure detectors

— In Consensus: No two processes decide on different
values 48

Can’t we Guarantee both?

« Can be difficult to satisfy both liveness and safety
in an asynchronous distributed system!

— Failure Detector: Completeness (Liveness) and
Accuracy (Safety) cannot both be guaranteed by
a failure detector in an asynchronous distributed
system

— Consensus: Decisions (Liveness) and correct
decisions (Safety) cannot both be guaranteed by
any consensus protocol in an asynchronous
distributed system

— Very difficult for legal systems (anywhere in
the world) to guarantee that all criminals are
jailed (Liveness) and no innocents are jailed
(Safety) 49

In the language of Global States

« Recall that a distributed system moves from one global state to
another global state, via causal steps

« Liveness w.r.t. a property Pr in a given state S means

— S satisfies Pr, or there is some causal path of global states from S to S’
where S’ satisfies Pr

« Safety w.r.t. a property Pr in a given state S means
S satisfies Pr, and all global states S’ reachable from S also satisfy Pr

50

Using Global Snapshot Algorithm

« Chandy-Lamport algorithm can be used to detect global properties that
are stable

— Stable = once true, stays true forever afterwards
« Stable Liveness examples

— Computation has terminated
« Stable Non-Safety examples

— There is a deadlock

— An object is orphaned (no pointers point to it)

« All stable global properties can be detected using
the Chandy-Lamport algorithm
+ Due to its causal correctness 51

Summary

« The ability to calculate global snapshots in a
distributed system is very important

* But don’t want to interrupt running distributed
application

« Chandy-Lamport algorithm calculates global
snapshot

« Obeys causality (creates a consistent cut)
« Can be used to detect stable global properties
« Safety vs. Liveness
52

Exercises

1. Why does causality suffice for snapshots?
2. With perfectly synchronized clocks, why can’t we take a
perfect snapshot?

3. In the Chandy-Lamport algorithm, if a message is received
before a process takes its snapshot, iIs the message send event
part of the snapshot? Message receive event?

4. Prove that the Chandy-Lamport Algorithm only creates
consistent cuts.

5. What is the difference between safety and liveness properties? 53

Announcements

« HW1, HW2 solutions released
 MP3, HW3 coming after midterm
« Midterm Thursday 10/10
— Written, in class
» Locations:
— 1f your last name starts with A-P: CIF 0027/1025

— if your last name starts with Q-Z: Natural History Building, Room 2079
« 1301 W Green Street

— Please arrive 10 minutes before. We start on time, and end on time.
e Material; Lecture 1-12
e Practice Midterm Released

54

	Slide 1
	Slide 2: Announcements
	Slide 3: Here’s a Snapshot
	Slide 4: Distributed Snapshot
	Slide 5: In the Cloud
	Slide 6: What’s a Global Snapshot?
	Slide 7: Obvious First Solution
	Slide 8: Example
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Moving from State to State
	Slide 17: System Model
	Slide 18: Requirements
	Slide 19: Chandy-Lamport Global Snapshot Algorithm
	Slide 20: Chandy-Lamport Global Snapshot Algorithm (2)
	Slide 21: Chandy-Lamport Global Snapshot Algorithm (3)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Algorithm has Terminated
	Slide 33: Collect the Global Snapshot Pieces
	Slide 34: Next
	Slide 35: Cuts
	Slide 36: Consistent Cuts
	Slide 37: Example
	Slide 38: Our Global Snapshot Example …
	Slide 39: … is causally correct
	Slide 40: In fact…
	Slide 41: Chandy-Lamport Global Snapshot algorithm creates a consistent cut
	Slide 42: Chandy-Lamport Global Snapshot algorithm creates a consistent cut: Proof
	Slide 43: Next
	Slide 44: “Correctness” in Distributed Systems
	Slide 45: Liveness
	Slide 46: Liveness: Examples
	Slide 47: Safety
	Slide 48: Safety: Examples
	Slide 49: Can’t we Guarantee both?
	Slide 50: In the language of Global States
	Slide 51: Using Global Snapshot Algorithm
	Slide 52: Summary
	Slide 53
	Slide 54: Announcements

