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Announcements

« HW1, HW2 solutions released
 MP3, HW3 coming after midterm
« Midterm Thursday 10/10
— Written, in class
» Locations:
— 1f your last name starts with A-P: CIF 0027/1025

— if your last name starts with Q-Z: Natural History Building, Room 2079
« 1301 W Green Street

— Please arrive 10 minutes before. We start on time, and end on time.
e Material; Lecture 1-12
e Practice Midterm Released
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Distributed Snapshot

* More often, each country’s representative
IS sitting In their respective capital, and
sending messages to each other (say
emails).

 How do you calculate a “global snapshot”
In that distributed system?

« What does a “global snapshot” even
mean?



In the Cloud

In a cloud: each application or service is running on
multiple servers

Servers handling concurrent events and interacting with
each other

The ability to obtain a “global photograph” of the system
IS important

Some uses of having a global picture of the system

Checkpointing: can restart distributed application on failure

Garbage collection of objects: objects at servers that don’t have
any other objects (at any servers) with pointers to them

Deadlock detection: Useful in database transaction systems

Termination of computation: Useful in batch computing systems
like Folding@Home, SETI@Home



What's a Global Snapshot?

* Global Snapshot = Global State =
Individual state of each process in the distributed
system
+

Individual state of each communication channel in the
distributed system

« Capture the instantaneous state of each process

 And the instantaneous state of egach communication
channel, i.e., messages in transit on the channels




Obvious First Solution

« Synchronize clocks of all processes
« Ask all processes to record their states at known time t
* Problems?

— Time synchronization always has error

* Your bank might inform you, “We lost the
state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

— Also, does not record the state of messages in the
channels

« Again: synchronization not required — causality is
enough!
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Moving from State to State

* Whenever an event happens anywhere in the
system, the global state changes

— Process receives message
— Process sends message
— Process takes a step
« State to state movement obeys causality

— Next: Causal algorithm for Global Snapshot
calculation
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System Model

 Problem: Record a global snapshot (state for each process,
and state for each channel)

« System Model:

— N processes in the system

— There are two uni-directional communication channels between
each ordered process pair : Pj = Piand Pi 2 Pj

— Communication channels are FIFO-ordered
« First in First out
— No failure
— All messages arrive intact, and are not duplicated
» Other papers later relaxed some of these assumptions
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Requirements

« Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

« Each process is able to record its own state

— Process state: Application-defined state or, in the worst
case:

— its heap, registers, program counter, code, etc. (essentially
the coredump)

« Global state is collected in a distributed manner
« Any process may initiate the snapshot

— We’ll assume just one snapshot run for now
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Chandy-Lamport Global Snapshot Algorithm

» First, Initiator Pi records its own state
« Initiator process creates special messages called “[\Viarker” messages
— Not an application message, does not interfere with application messages

« forj=1to N except i
Pi sends out a Marker message on outgoing
channel C;;

* (N-1) channels
the incoming messages on each of
the incoming channels at Pi: C;; (for j=1 to N except

)
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Chandy-Lamport Global Snapshot Algorithm (2)

Whenever a process Pi receives a Marker message on an incoming channel C;

« if (this is the first Marker Pi is seeing)
— Pirecords its own state first
— Marks the state of channel Cy; as “empty”
— for j=1to N except i
» Pisends out a Marker message on outgoing channel C;;

the incoming messages on each of the incoming channels at Pi: C;;
(for j=1to N except i and k)

« else // already seen a Marker message

— Mark the state of channel C,; as all the messages that have arrived on it
Cki
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Chandy-Lamport Global Snapshot Algorithm (3)

The algorithm terminates when
» All processes have received a Marker
— To record their own state

» All processes have received a Marker on all the (N-
1) incoming channels at each

— To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot
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Collect the Global Snapshot Pieces C,, = <message G>D >
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Next

» Global Snapshot calculated by Chandy-Lamport algorithm is
causally correct

— What?
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« Cut =time frontier at each process and at each channel

« Events at the process/channel that happen before the cut are “in
the cut”

— And happening after the cut are “out of the cut”
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Consistent Cuts

Consistent Cut: a cut that obeys causality
« Acut Cis a consistent cut if and only if:
for (each pair of events e, f in the system)
— Such that event e is in the cut C, and if f — e (f happens-before e)
« Then: Event fis also in the cut C
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Our Global Snapshot Example ...

C,; = <message G=>D >
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... is causally correct Cyu= <message G>D >
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In fact...

« Any run of the Chandy-Lamport Global Snapshot algorithm creates a
consistent cut
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Chandy-Lamport Global Snapshot algorithm

creates a consistent cut

Let’s quickly look at the proof

-Let e; and e; be events occurring at Pi and Pj,
respectively such that

— € 2 ¢ (e;happens before ¢;)
*The snapshot algorithm ensures that
If ¢; Is In the cut then g; is also In the cut.

e Thatis: if e 2 <Pj records its state>, then
— it must be true that e; = <Pi records its state>,
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Chandy-Lamport Global Snapshot algorithm

creates a consistent cut: Proof

« ife; > <Pjrecords its state>, then it must be true
that e; = <Pi records its state>,

By contradiction, suppose e; > <Pj records its state> and
<Pi records its state> = e,

« Consider the path of app messages (through other
processes) that go from e; = g;

* Due to FIFO ordering, markers on each link in above
path will precede regular app messages

» Thus, since <Pi records its state> - e, , it must be true
that Pj received a marker before e,

e Thus & IS not in the cut => contradiction
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Next

« What is the Chandy-Lamport algorithm used for?
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“Correctness” in Distributed Systems

« Can be seen in two ways
« Liveness and Safety
« Often confused — it’s important to distinguish from each other

44



Liveness

« Liveness = guarantee that something good will happen, eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...
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Liveness: Examples

« Liveness = guarantee that something good will happen,
eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

« Examples in Real World

— Guarantee that “at least one of the atheletes in the 100m final
will win gold” is liveness

— A criminal will eventually be jailed
« Examples in a Distributed System
— Distributed computation: Guarantee that it will terminate

“Completeness” in failure detectors: every failure is
eventually detected by some non-faulty process

— In Consensus: All processes eventually decide on a value 46



Safety

 Safety = guarantee that something bad will never happen
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Safety: Examples

« Safety = guarantee that something bad will never happen
« Examples in Real World

— A peace treaty between two nations provides safety

» War will never happen

— An innocent person will never be jailed
« Examples in a Distributed System

— There is no deadlock in a distributed transaction system

— No object is orphaned in a distributed object system

— “Accuracy” in failure detectors

— In Consensus: No two processes decide on different
values 48



Can’t we Guarantee both?

« Can be difficult to satisfy both liveness and safety
in an asynchronous distributed system!

— Failure Detector: Completeness (Liveness) and
Accuracy (Safety) cannot both be guaranteed by
a failure detector in an asynchronous distributed
system

— Consensus: Decisions (Liveness) and correct
decisions (Safety) cannot both be guaranteed by
any consensus protocol in an asynchronous
distributed system

— Very difficult for legal systems (anywhere in
the world) to guarantee that all criminals are
jailed (Liveness) and no innocents are jailed
(Safety) 49



In the language of Global States

« Recall that a distributed system moves from one global state to
another global state, via causal steps

« Liveness w.r.t. a property Pr in a given state S means

— S satisfies Pr, or there is some causal path of global states from S to S’
where S’ satisfies Pr

« Safety w.r.t. a property Pr in a given state S means
S satisfies Pr, and all global states S’ reachable from S also satisfy Pr
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Using Global Snapshot Algorithm

« Chandy-Lamport algorithm can be used to detect global properties that
are stable

— Stable = once true, stays true forever afterwards
« Stable Liveness examples

— Computation has terminated
« Stable Non-Safety examples

— There is a deadlock

— An object is orphaned (no pointers point to it)

« All stable global properties can be detected using
the Chandy-Lamport algorithm
+ Due to its causal correctness 51



Summary

« The ability to calculate global snapshots in a
distributed system is very important

* But don’t want to interrupt running distributed
application

« Chandy-Lamport algorithm calculates global
snapshot

« Obeys causality (creates a consistent cut)
« Can be used to detect stable global properties
« Safety vs. Liveness
52



Exercises

1. Why does causality suffice for snapshots?
2. With perfectly synchronized clocks, why can’t we take a
perfect snapshot?

3. In the Chandy-Lamport algorithm, if a message is received
before a process takes its snapshot, iIs the message send event
part of the snapshot? Message receive event?

4. Prove that the Chandy-Lamport Algorithm only creates
consistent cuts.

5. What is the difference between safety and liveness properties? 53



Announcements

« HW1, HW2 solutions released
 MP3, HW3 coming after midterm
« Midterm Thursday 10/10
— Written, in class
» Locations:
— 1f your last name starts with A-P: CIF 0027/1025

— if your last name starts with Q-Z: Natural History Building, Room 2079
« 1301 W Green Street

— Please arrive 10 minutes before. We start on time, and end on time.
e Material; Lecture 1-12
e Practice Midterm Released
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