CS 425 l ECE 428

Distributed Systems
Fall 2024

Indranil Gupta (Indy)
w/ Aishwarya Ganesan

Lecture 12: Time and Ordering All slides © 1G

Announcements

« (All) HW2 due 10/6 @ 2 pm (Sunday!) US Central (hard deadline)
« HWI1 grades released soon (until XX/XX @ Y'Y pm to submit regrade requests)
« Midterm Thursday (10/10): Written, in class

e Locations:

— TBD: if your last name starts with A-L
- TBD

— TBD: if your last name starts with M-Z
 Material;: Lecture 1-12
e Practice Midterm Released

e Check out the “Timestamps Song” on Piazza! (useful for remembering rules!)2

Why Synchronization?

* You want to catch a bus at 6.05 pm, but your watch is off by
15 minutes

— What if your watch is Late by 15 minutes?
* You’ll miss the bus!
— What if your watch is Fast by 15 minutes?

* You’ll end up unfairly waiting for a longer time than you
intended

« Time synchronization is required for both
— Correctness
— Fairness

Synchronization In The Cloud

« Cloud airline reservation system

« Server A receives a client request to purchase last ticket on flight
ABC 123.

« Server A timestamps purchase using local clock 9h:15m:32.45s,
and logs it. Replies ok to client.

« That was the last seat. Server A sends message to Server B
saying “flight full.”

* B enters “Flight ABC 123 full” + its own local clock value
(which reads 9h:10m:10.11s) into its log.

« Server C queries A’s and B’s logs. Is confused that a client
purchased a ticket at A after the flight became full at B.

» This may lead to further incorrect actions by C

Why is it Challenging?

« End hosts in Internet-based systems (like clouds)
— Each have their own clocks

— Unlike processors (CPUs) within one server or
workstation which share a system clock

* Processes in Internet-based systems follow an
asynchronous system model

— No bounds on
« Message delays
» Processing delays

— Unlike multi-processor (or parallel) systems which
follow a synchronous system model

Some Definitions

* An Asynchronous Distributed System consists of a number of
processes

« Each process has a state (values of variables).

« Each process takes actions to change its state, which may be
an instruction or a communication action (send, receive).

« Aneventis the occurrence of an action.

« Each process has a local clock — events within a process can be
assigned timestamps, and thus ordered linearly.

« But-—inadistributed system, we also need to know the time
order of events across different processes.

Clock Skew vs. Clock Drift

« Each process (running at some end host) has its own clock.
* When comparing two clocks at two processes:
» Clock Skew = Relative Difference in clock values of two processes
 Like distance between two vehicles on a road
« Clock Drift = Relative Difference in clock frequencies (rates) of two processes
 Like difference in speeds of two vehicles on the road
* A non-zero clock skew implies clocks are not synchronized.
« A non-zero clock drift causes skew to increase (eventually).
— If faster vehicle is ahead, it will drift away

— If faster vehicle is behind, it will catch up and then drift away

How often to Synchronize?

« Maximum Drift Rate (MDR) of a clock

« Absolute MDR is defined relative to Coordinated Universal
Time (UTC). UTC is the “correct” time at any point of time.

 MDR of a process depends on the environment.

« Max drift rate between two clocks with similar MDR is 2 *
MDR

« Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every: M/ (2 * MDR)
time units

— Since time = distance/speed

External vs Internal Synchronization

« Consider a group of processes
« External Synchronization
— Each process C(i)’s clock is within a bound D of a well-known clock S external to the group
— |C(i) — S| < D at all times
— External clock may be connected to UTC (Universal Coordinated Time) or an atomic clock
— E.g., Cristian’s algorithm, NTP
« Internal Synchronization
— Every pair of processes in group have clocks within bound D
— |C(i) — C(j)| < D at all times and for all processes |, |
— E.g., Berkeley algorithm (not discussed in course)

External vs Internal Synchronization (2)

» External Synchronization with D => Internal
Synchronization with 2*D

* Internal Synchronization does not imply External
Synchronization

— In fact, the entire system may drift away from the
external clock S!

10

Next

 Algorithms for Clock Synchronization

11

Cristian’s Algorithm

12

Basics

« External time synchronization
« All processes P synchronize with a time server S

Set clock to t Ti e

P
What's the time?

Herve's the time t!

S \

Check local clock to find time t

13

What’'s Wrong

« By the time response message is received at P,
time has moved on

« P’stime set to t is inaccurate!
 Inaccuracy a function of message latencies

 Since latencies unbounded in an asynchronous
system, the inaccuracy cannot be bounded

14

Cristian’s Algorithm

* P measures the round-trip-time RTT of message exchange

' Set clock to t Time

>
Whats the time?
ere’s the time t!
>

Check local clock to find time t

15

Cristian’s Algorithm (2)

* P measures the round-trip-time RTT of message exchange
« Suppose we know the minimum P - S latency minl
« And the minimum S - P latency min2

— minl and min2 depend on Operating system overhead to buffer messages, TCP
time to queue messages, etc.

RTT
[A y Set clock to t

> Time
P What S\the time?

ere s the time t!

S | >

Check local clock to find time t

16

Cristian’s Algorithm (4)

The actual time at P when it receives response is between [t+min2, t+RTT-
minl]
« P sets its time to halfway through this interval
— To:t+ (RTT+min2-minl)/2
» Erroris at most (RTT-min2-minl)/2
— Bounded!

 Setclock tot

RTT
> Time
P What S\the time?
ere s the time t!
>

Check local clock to find time t

17

Gotchas

« Allowed to increase clock value but should never
decrease clock value

— May violate ordering of events within the same
process

« Allowed to increase or decrease speed of clock

« Iferror is too high, take multiple readings and
average them

18

NTP = Network Time Protocol

« NTP Servers organized in atree
« Each Client = a leaf of tree
 Each node synchronizes with its tree parent

Primary servers

Secondary servers

Tertiary servers

Client

19

NTP Protocol

Message 1 recv télme trl M essage 2 send time ts?

Child Time

Let’s start protocol Messag
essage 1 tSl tr2
Parent |

Message 2 recv tlme tr2
I\/Iessage 1 send time tsl

20

What the Child Does

e Child calculates offset between its
clock and parent’s clock

o Usestsl, trl, ts2, tr2
e Offset Is calculated as
0= (trl —tr2 + ts2 — ts1)/2

21

Why o = (trl - tr2 + ts2 - ts1)/2?

o Offseto=(trl —tr2 + ts2 — ts1)/2

* Let’s calculate the error

« Suppose real offset is oreal
— Child is ahead of parent by oreal
— Parent is ahead of child by -oreal

« Suppose one-way latency of Message 1 is L1
(L2 for Message 2)

« Nooneknows L1or L2!
« Then
trl =ts1 + L1 + oreal
tr2 =ts2 + L2 — oreal 22

Why o = (trl - tr2 + ts2 - ts1)/2? (2)

« Then
trl =tsl + L1 + oreal
tr2 =ts2 + L2 — oreal

« Subtracting second equation from the first
oreal = (trl —tr2 + ts2 —ts1)/2 + (L2 — L1)/2
=>oreal =0+ (L2 - L1)/2
=> |oreal — o| < |(L2 — L1)/2| < |(L2 + L1)/2|
— Thus, the error is bounded by the round-trip-
time

23

We still have a non-zero error!
We just can’t seem to get rid of error

— Can’t, as long as message latencies are non-zero

Can we avoid synchronizing clocks altogether, and still be able to
order events?

24

Lamport Timestamps

25

Ordering Events in a Distributed System

« Toorder events across processes, trying to sync clocks is one approach
« What if we instead assigned timestamps to events that were not absolute time?

« As long as these timestamps obey causality, that
would work
If an event A causally happens before another
event B, then timestamp(A) < timestamp(B)
Humans use causality all the time
E.g., | enter a house only after | unlock it
E.g., You receive a letter only after | send it

26

Logical (or Lamport) Ordering

» Proposed by Leslie Lamport in the 1970s
« Used in almost all distributed systems since then

« Almost all cloud computing systems use some
form of logical ordering of events

27

Logical (or Lamport) Ordering(2)

« Define alogical relation Happens-Before among pairs of events

« Happens-Before denoted as —

Three rules

On the same process: a — b, if time(a) < time(b) (using the local clock)
If p1 sends m to p2: send(m) — receive(m)

(Transitivity) Ifa —»band b —»cthen a »c¢

Creates a partial order among events

— Not all events related to each other via —»

e

28

® Instruction or step

— ~ Message

29

Happens-Before

- A2 B ® Instruction or step
* B2>F — ~ Message

- ADF

Happens-Before (2)

ST Ye °
c EOJ ® Instruction or step
c H> — Message

e C—>2

In practice: Lamport timestamps

« Goal: Assign logical (Lamport) timestamp to each event
« Timestamps obey causality

* Rules
— Each process uses a local counter (clock) which is an integer
« initial value of counter is zero

A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the event
as its timestamp.

A send (message) event carries its timestamp
For a receive (message) event the counter is updated by

max(local clock, message timestamp) + 1
32

Example

® Instruction or step
— ~ Message

33

Lamport Timestamps

® Instruction or step
— ~ Message

Lamport Timestamps

® Instruction or step
— ~ Message

Lamport Timestamps

® Instruction or step
— ~ Message

Lamport Timestamps

® Instruction or step
— ~ Message

Lamport Timestamps

max(3, 4)+1

® Instruction or step
— ~ Message

Lamport Timestamps

Pl ® gt >
\ / \ Time
P2 >

AN

(® Instruction or step
— ~ Message

Obeying Causality

A B |

NEANYAT
AN

P3 ° >

- AD>B:ul<?2 ® Instruction or step
B>F:2<3
~— ~ Message

e A2>F::1<3

Obeying Causality (2)

A B |

NEANYAT
AR

P3

« H>G:1<4 ® Instruction or step
e F>J :3<7

« H>J:1<7 Message

e C=>1J)::3<7

Not always implying Causality

A B |

NN
AN

P3 ®
?C2>F?13=3 ® Instruction or step
?H>C?:1<3
(C, F) and (H, C) are pairs of Message

concurrent events

Concurrent Events

e A pair of concurrent events doesn’t have a causal
path from one event to another (either way, in the

pair)
« Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events

« Ok, since concurrent events are not causality related!
« Remember

El 2> E2 = timestamp(E1) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) =

{E1 - E2} OR {E1 and E2 concurrent}

43

Next

« Can we have causal or logical timestamps from which we can tell if
two events are concurrent or causally related?

44

Vector Timestamps

« Used in key-value stores like Riak

» Each process uses a vector of integer clocks

* Suppose there are N processes in the group 1...N
» Each vector has N elements

» Process | maintains vector V;[1...NV]

» Jth element of vector clock at process i, V;[j], is I’s
knowledge of latest events at process |

45

Assigning Vector Timestamps

* Incrementing vector clocks

1. On an instruction or send event at process I, it increments only its ith element
of its vector clock

2. Each message carries the send-event’s vector timestamp V pessagel - V]
3. On receiving a message at process i:

Vilil = Vili] + 1

Vilill = max(Vmessagell], Villl) for j #1

46

® Instruction or step

— ~ Message

47

Vector Timestamps

NNV
NARY

Vector Timestamps

NN
e N\

Vector Timestamps

P1 . ® >
\ / \ Time
s >

P3 - ®

Vector Timestamps

Vector Timestamps

Causally-Related ...

® VT, =VT,
iff (if and only if)
VT,[i] = VT,[i], foralli=1, ... ,N
e VT,<VT,,
iff VTq[i] <VT,[i], foralli=1, ... ,N
« Two events are causally related iff
VT, <VT,, ie,
iff VI, <VT,&
there exists j such that
1<j<N&VTj] < VT, [j]

53

... or Not Causally-Related

« Twoevents VT, and VT,are concurrent
Iff
NOT (VT,<VT,) AND NOT (VT,<VT)

We’ll denote this as VT, ||| VT,

o4

Obeying Causality

A-> B :(1,0,0)<(2,0,0)
B->F:(200)<(221)
A->F: (10,0 <(221) 55

Obeying Causality (2)

H->G:(001)<(231)
F>J ::(221)<(53,3)
H->1J :(0,021)<(5,33)
C->1J ::(3,00)<(5,3,3

ldentifying Concurrent Events

C&F:: (3,00]| (2221
H&C::(0,0,1)]](3,0,0)
(C, F) and (H, C) are pairs of concurrent events

Logical Timestamps: Summary

« Lamport timestamps

— Integer clocks assigned to events

— Obeys causality

— Cannot distinguish concurrent events
« Vector timestamps

— Obey causality

— By using more space, can also identify
concurrent events

58

Time and Ordering: Summary

* Clocks are unsynchronized in an asynchronous distributed system
« But need to order events, across processes!
« Time synchronization

— Ciristian’s algorithm

— NTP

— Berkeley algorithm (not in syllabus)

— But error a function of round-trip-time

« Can avoid time sync altogether by instead
assigning logical timestamps to events

39

Announcements

« (All) HW2 due 10/6 @ 2 pm (Sunday!) US Central (hard deadline)
« HWI1 grades released soon (until XX/XX @ Y'Y pm to submit regrade requests)
« Midterm Thursday (10/10): Written, in class

e Locations:

— TBD: if your last name starts with A-L
- TBD

— TBD: if your last name starts with M-Z
 Material;: Lecture 1-12
e Practice Midterm Released

e Check out the “Timestamps Song” on Piazza! (useful for remembering rules!$o

	Slide 1
	Slide 2: Announcements
	Slide 3
	Slide 4: Synchronization In The Cloud
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Next
	Slide 12: Cristian’s Algorithm
	Slide 13: Basics
	Slide 14: What’s Wrong
	Slide 15: Cristian’s Algorithm
	Slide 16: Cristian’s Algorithm (2)
	Slide 17: Cristian’s Algorithm (4)
	Slide 18: Gotchas
	Slide 19: NTP = Network Time Protocol
	Slide 20: NTP Protocol
	Slide 21: What the Child Does
	Slide 22: Why o = (tr1 - tr2 + ts2 - ts1)/2?
	Slide 23: Why o = (tr1 - tr2 + ts2 - ts1)/2? (2)
	Slide 24: And yet…
	Slide 25: Lamport Timestamps
	Slide 26: Ordering Events in a Distributed System
	Slide 27: Logical (or Lamport) Ordering
	Slide 28: Logical (or Lamport) Ordering(2)
	Slide 29: Example
	Slide 30: Happens-Before
	Slide 31: Happens-Before (2)
	Slide 32: In practice: Lamport timestamps
	Slide 33: Example
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Obeying Causality
	Slide 41: Obeying Causality (2)
	Slide 42: Not always implying Causality
	Slide 43: Concurrent Events
	Slide 44: Next
	Slide 45: Vector Timestamps
	Slide 46: Assigning Vector Timestamps
	Slide 47: Example
	Slide 48: Vector Timestamps
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Logical Timestamps: Summary
	Slide 59: Time and Ordering: Summary
	Slide 60: Announcements

