CS 425/ ECE 428
Distributed Systems
Fall 2023

Indranil Gupta (Indy)
w/ Aishwarya Ganesan

Lecture 6.: Failure Detection and

Membership, Grids All slides © 1G

A Challenge

You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’ t have any failures
in our datacenter!”

Do you believe him/her?

What would be your first responsibility?
Build a failure detector

What are some things that could go wrong if you didn’ t do
this?

Failures are the Norm

... not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) 1s once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

To build a failure detector

* You have a few options

1. Hire 1000 people, each to monitor one machine in the datacenter and
report to you when it fails.

2. Write a failure detector program (distributed) that automatically detects
failures and reports to your workstation.

Which is more preferable, and why?

Target Settings

 Process ‘group -based systems
— Clouds/Datacenters
— Replicated servers
— Distributed databases

* Fail-stop (crash) process failures

Group Membership Service

| Apf)lication Quéries
e, gossip, overlays,
1 DHT’ s, etc.

Application Process pI

Membership List

Membership
Protocol

Unreliable
Communication

Two sub-protocols

Application Process pI
Group

*Complete list all the time (Strongly consistent) m’

Failure Detector ’

*Virtual synchrony
*Almost-Complete list (Weakly consistent)
*Gossip-style, SW

*SCAMP, T-MAN, Cyclon,... Unreliable

Focus of this series of lecture Communication

Large Group: Scalability A Goal
this is us (pi)

Unreliable Communication
etwor

Group Membership Protocol

ome Process

fi 1ckl
pj\(:‘ms . CIA 1 ut cylc y

l -
i\‘\ T |
- L
11 -
Unreliable Communication
etwor

Fail-stop Failures only 9

Next

* How do you design a group membership
protocol?

10

I. pj crashes

Nothing we can do about it!
A frequent occurrence
Common case rather than exception

Frequency goes up linearly with size of
datacenter

11

Il. Distributed Failure Detectors:

Desirable Properties

* Completeness = each failure 1s detected
= there 1s no mistaken detection
* Speed
— Time to first detection of a failure

e Scale

— Equal Load on each member
— Network Message Load

12

Distributed Failure Detectors:

Properties
o Completeness .. __—>
~-.e Accuracy
* Speed

— Time to first detection of a failur

* Scale
— Equal Load on each member

— Network Message Load

What Real Failure Detectors Prefer

-
-
— - -
e e . -

Y 1&551:15&2ﬂﬂ: ::::: ——" | Partial/Probabilistic
e S guarantee

* Speed
— Time to first detection of a failure
e Scale

— Equal Load on each member
— Network Message Load

What Real Failure Detectors Prefer

-
-
— - -
e e . —-—

Y —A;:—éil—tgé--gzz ::::: ——" | Partial/Probabilistic
T Fo-oooe guarantee

* Speed

— Time to first detection of a failure

— Equal Load on each member

— Network Message Load =

What Real Failure Detectors Prefer

-

-

-
-~ —
-

Y —X:C=5£l;§£;--==: ::::: ——" | Partial/Probabilistic
T Fo-oooe guarantee

* Speed

— Time to first detection of a failure

e Scale

— Equal Load on eac

No bottlenecks/single

— Network Message Load failure point

Failure Detector Properties

Completeness

Accuracy

Speed
— Time to first detection of a failure
Scale

— Equal Load on each member
— Network Message Load

Centralized Heartbeating

e S EHup 5>
o

. =
PJ \’l *Heartbeats sent periodically
oIf heartbeat not received from pi within
. . . 18
timeout, mark pi as failed

Ring Heartbeating

@ Unpredictable on
simultaneous multiple
failures

19

All-to-All Heartbeating

© Equal load per member
S ingle hb loss = false
csfion

Pl

20

Next

* How do we increase the robustness of all-to-all
heartbeating?

21

Gossip-style Heartbeating

© Good accuracy
properties

22

Gossip-Style Failure Detection

Time (local)

1 10120 66
2 10103 62
3 10098 63
4 10111 65
e T
Address
Heartbeat Counter
Protocol:

*Nodes periodically gossip their membership
list: pick random nodes, send it list

*On receipt, it is merged with local

membership list

*When an entry times out, member is marked

as failed

1 10118 64
2 10110 64
3 10090 58
4 10111 65
1 10120 70
2 10110 64
3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

23

Gossip-Style Failure Detection

e If the heartbeat has not increased for more than
T, seconds,
the member 1s considered failed

* And after a further T, seconds, 1t will
delete the member from the list

 Why an additional timeout? Why not delete
right away?

24

* What if an entry pointing to a failed node 1s
deleted right after T, (=24) seconds?

Gossip-Style Failure Detection

10120

66

10103

62

1
2
3
4

10098

55

10111

65

) 4

‘/Q

10120

66

10110

64

1009%

66

El R

10111

65

Current time : 75 at node 2

25

Analysis/Discussion

Well-known result: a gossip takes O(log(N)) time to propagate.
So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to
propagate.
So: N heartbeats take:
— O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)
— O(N.log(N)) time to propagate, if bandwidth allowed per node 1s only O(1)
— What about O(k) bandwidth?

What happens if gossip period T 1s decreased?

gossip
What happens to P ;i (false positive rate) as T,y , Tojeanyp 18 Increased?

Tradeoff: False positive rate vs. detection time vs. bandwidth

Next

* So, 1s this the best we can do? What 1s the best
we can do?

27

Failure Detector Properties ...

Completeness

Accuracy

Speed

— Time to first detection of a failure

Scale

— Equal Load on each member
— Network Message Load

28

...Are application-defined Requirements

— Time to first detection of a failure

e Scale

— Equal Load on each member
— Network Message Load

29

...Are application-defined Requirements

-

— Time to first detectror-ofofailura
N*L: Compare this across protocols

—________—_——————_——————______
- -~
- - -
~
N

—
—
- o —

——
——
el T T e

— Network Message Load

30

All-to-All Heartbeating

31

Gossip-style Heartbeating

] _
«n
. Y
-
® *
.

L=N/tg=N*logN/T

32

What'’s the Best/Optimal we can do?

* Worst case load L* per member 1n the group
(messages per second)
— as a function of T, PM(T), N

— Independent Message Loss probability p,,;

_ log(PM(T)) 1
log(pml) T

{ L*

Heartbeating

* Optimal L 1s independent of N (!)
* All-to-all and gossip-based: sub-optimal
.« L=O(N/T)
* try to achieve simultaneous detection at all processes

* fail to distinguish Failure Detection and Dissemination
components

=Can we reach this bound?
oKey:
0 Separate the two components
0 Use a non heartbeat-based Failure Detection Component

34

Next

* Is there a better failure detector?

35

Pl
erandom pj
Ping

random K
ping-req

e

Protocol period
=T time units
|

|
v

— T ——
- o

PJ -

~

~—y -
b) —
—_—es o - = -

—_—
_—-
—_—

i T R—
— _— e o .
-_—

—
—
b .

—
~~..~
—
—
—
b s
—

—
—
—
— -

—
—
—
—
— -
— -
—-— =
— -
—
—
— -
— -
—-— -

—
- ——\——____—
—

K random
pProcesses

36

Detection Time

| Y _
* Prob. of being pinged in T’= 1—(1 _N)N '=1-¢"

+ B[T]= T —°_
e—1
* Completeness: Any alive member detects failure

— Eventually

— By using a trick: within worst case O(N) protocol periods

37

Accuracy, Load

 PM(T) 1s exponential in -K. Also depends on pm!/ (and

pf)
— See paper
L E[L]
— 3
. L*<28 L* for up to 15 % loss rates

38

SWIM Failure Detector

Parameter

SWIM

First Detection Time

e

e—1

* Constant (independent of group size)

* Expected periods

Process Load

* Constant per period
* <8 L* for 15% loss

False Positive Rate

* Tunable (via K)
* Falls exponentially as load is scaled

Completeness

* Deterministic time-bounded
* Within O(log(N)) periods w.h.p.

39

Time-bounded Completeness

* Key: select each membership element once as a
ping target 1n a traversal

— Round-robin pinging
— Random permutation of list after each traversal

e Each failure 1s detected in worst case 2N-1
(local) protocol periods

* Preserves FD properties "

SWIM versus Heartbeating

A

ON) n

First Detection
Time

Heartbeating

SWIM

Heartbeating

For Fixed :
» False Positive Rate
* Message Loss Rate

m Process Load

m >

41

Next

* How do failure detectors fit into the big picture
of a group membership protocol?

* What are the missing blocks?

42

Group Membership Protocol
Il Failure Detector
ome Process

p\l: — - fi ut cyickly

= BB ij\(fide P
_ ‘-

| @ Dissemination
eliable Communicatign
etwor
Fail-st6p Faildres

43

Dissemination Options
* Multicast (Hardware / IP)

— unreliable
— multiple simultaneous multicasts
* Point-to-point (TCP / UDP)
— expensive
* Zero extra messages: Piggyback on Failure
Detector messages
— Infection-style Dissemination

44

Infection-style Dlssemmatlon

— - - .
- L I

pi pJ ¢~ TN
y Y - \ g _ 7/
| *random Pj|- - _ T R -
| ping T T T =-- > K random
| _ -
: X- - -~ "|ack processes
|
| *random K |____ <
: ping-req ~~~~~.~::_ —————————— »X

. | = = *
Protocol period hem == m ping

=T time units
|

ack Piggybacked
membership

information
45

—
—
—
—
—
—
—
—
—-— =
—
—
—
—
—
—
—
—
—

|
v

Infection-style Dissemination

* Epidemic/Gossip style dissemination

— After A.1og(N) protocol periods, N~ processes would not
have heard about an update

* Maintain a buffer of recently joined/evicted processes
— Piggyback from this buffer
— Prefer recent updates

* Buffer elements are garbage collected after a while

— After 1.1og(N) protocol periods, 1.e., once they’ve propagated
through the system; this defines weak consistency

46

Suspicion Mechanism

* False detections, due to

— Perturbed processes

— Packet losses, e.g., from congestion
* Indirect pinging may not solve the problem

* Key: suspect a process before declaring 1t as
failed in the group

47

Suspicion Mechanism

Pl

Dissmn‘ (Suspect pj)

Dissmn | (Failed pj)

Suspicion Mechanism

Distinguish multiple suspicions of a process
— Per-process incarnation number

— Inc # for pi can be incremented only by pi

* e.g., when it receives a (Suspect, pi) message

— Somewhat similar to DSDV (routing protocol in ad-hoc nets)
Higher inc# notifications over-ride lower inc# s
Within an inc#: (Suspect inc #) > (Alive, 1nc #)

(Failed, inc #) overrides everything else N

SWIM In Industry

e First used in Oasis/Coral CDN

* Implemented open-source by Hashicorp Inc.
— Called “Sert”
— Later “Consul”

* Today: Uber implemented it, uses 1t for failure detection
in their infrastructure

— See “ringpop” system

50

Wrap Up

Failures the norm, not the exception in datacenters
Every distributed system uses a failure detector
Many distributed systems use a membership service

Ring failure detection underlies
— IBM SP2 and many other similar clusters/machines

Gossip-style failure detection underlies
— Amazon EC2/S3 (rumored!)

51

Grid Computing

“A Cloudy History of Time”

The first datacenters!

Timesharing Companies Clouds and datacenters
1940 & Data Processing Industry \

Clusters
1980
1
1990 |
M\/
Peer to peer systems” 2012

PCs
(not distributed!)

53

“A Cloudy History of Time"

First large datacenters ENIAC ORDVAC ILLIAC

.
.,
.
0
.

= = Berkeley NOW Project
=== * Supercomputers
I ";Server Farms (e.g., Oceano)
Xerox g,
1960 Honeywell CRANY P2P Systéms (90s-00s)

THE SUPERCOMPUTER COMPANY .:‘.‘ 'Many MIHIOHS of users

1970 " «Many GB periday

Data Processing Indusi'xy
- 1968: $70 M. 1978: $3:15 B11110n
Timesharing Industry (1975)

*Market Share: Honeywell 34%, IBM 15%,

«Xerox 10%, CDC 10%, DEC 10%, UNIVAC 10%

*Honeywell 6000 & 635, IBM 370/168, o AT 1 T
Xerox 940 & Sigma 9, DEC PDP-10, UNIVAC 1108 e o0

2000 gt
[@sBitTorrent(591>

54

Example: Rapid Atmospheric Modeling System,
ColoState U

Hurricane Georges, 17 days in Sept 1998

“RAMS modeled the mesoscale convective complex that
dropped so much rain, in good agreement with recorded data”

— Used 5 km spacing instead of the usual 10 km
— Ran on 256+ processors

Computation-intenstive computing (or HPC = high
performance computing)

Can one run such a program without access to a
supercomputer?

55

|||||
7

/
/

7
I
——

o
e eV

1
1
1
1

“--Wisconsin

Distributed Computing Resources

\
AY
\
S
f’—‘
_-
-
”

S ——

56

An Application Coded by a Physicist

O J Ob O Output files of Job 0

{ Input to Job 2
Job 1 EI I

. Jobs 1 and 2 can

be concurrent §‘

Output files of Job 2
JObsttt Job 3

Job 2

An Application Coded by a Physicist

Output files of Job 0
Input to Job 2

Several

May take several hours/da
4 stages of a job
Init
Stage in

Execute

Stage out

Publish
Computation Intensive,

so Massively Parallel Output files of Job 2
Input to Job 3

58

Scheduling Problem

--..__ Wisconsin

Job 0

Job 2

59

2-level Scheduling Infrastructure

el - WiSCOnSin JOb 0
/// ”’td&l/' PI/'OZLOCOZ
) = Jo \‘}Jobz
RS T Job 3

60

Intra-site Protocol

HTCondor Protocol

- -
- -~

~Wisconsig o, 3

— |

1 7@Job0

~
S~ -

Internal Allocation & Scheduling
Monitoring
Distribution and Publishing of Files

61

Condor (now HTCondor)

* High-throughput computing system from U. Wisconsin Madison

* Belongs to a class of “Cycle-scavenging” systems
— SETI@Home and Folding@Home are other systems in this category

Such systems
* Run on a lot of workstations
 When workstation is free, ask site’s central server (or Globus) for tasks
» Ifuser hits a keystroke or mouse click, stop task
— Either kill task or ask server to reschedule task

* (Can also run on dedicated machines

Inter-site Protocol

- -~

~ -
S —— e ==

Internal structure of different
sites invisible to Globus JO

MIT ~~~~~~~~~~
- ~
- I~
- ~
7
e

-

. External Allocation & Scheduling
J -~ Stage in" & Stage out of Files 63

Globus

Globus Alliance involves universities, national US research labs, and some
companies

Standardized several things, especially software tools
Separately, but related: Open Grid Forum
Globus Alliance has developed the Globus Toolkit

http://toolkit.globus.org/toolkit/

http://toolkit.globus.org/toolkit/

Globus Toolkit

* Open-source

* Consists of several components

GridFTP: Wide-area transfer of bulk data

GRAMS (Grid Resource Allocation Manager): submit, locate, cancel, and
manage jobs
* Not a scheduler
* Globus communicates with the schedulers in intra-site protocols like HTCondor
or Portable Batch System (PBS)
RLS (Replica Location Service): Naming service that translates from a
file/dir name to a target location (or another file/dir name)

Libraries like XIO to provide a standard API for all Grid IO functionalities
Grid Security Infrastructure (GSI)

Security Issues

Important in Grids because they are federated, 1.e., no single entity controls the
entire infrastructure

Single sign-on: collective job set should require once-only user authentication
Mapping to local security mechanisms: some sites use Kerberos, others using Unix

Delegation: credentials to access resources inherited by subcomputations, e.g., job 0
tojob 1

Community authorization: e.g., third-party authentication

These are also important in clouds, but less so because clouds are typically run
under a central control

In clouds the focus 1s on failures, scale, on-demand nature

66

Summary

Grid computing focuses on computation-intensive computing
(HPC)

Though often federated, architecture and key concepts have a
lot in common with that of clouds

Are Grids/HPC converging towards clouds?
— E.g., Compare OpenStack and Globus

Announcements

MP1: Due this Sunday, demos Monday
— VMs distributed: see Piazza
— Demo signup sheet: now on Piazza (signup deadline: Sep 8)

— Demo details: see Piazza
* Make sure you print individual and total linecounts

HW1: due next Wed 9/13! (You should have started on 1t
already!)

Check Piazza often! It’s where all the announcements are at!

Please view Grid Computing Lecture Video from website!

— Included in midterm syllabus! (We won’t lecture in class) o

