
Apache Spark
Lecture by: Faria Kalim (lead TA)

CS425
UIUC

(See Video)



Why Spark?

• Another system for big data analytics

• Isn’t MapReduce good enough?
• Simplifies batch processing on large commodity clusters



Expensive save to disk for fault tolerance



Why Spark?

• MapReduce can be expensive for some applications e.g.,
• Iterative 
• Interactive

• Lacks efficient data sharing

• Specialized frameworks did evolve for different programming 
models
• Bulk Synchronous Processing (Pregel)
• Iterative MapReduce (Haloop) ….



Solution: Resilient Distributed Datasets (RDDs)

• RDDs
• Immutable, partitioned collection of records
• Built through coarse grained transformations (map, join …)
• Can be cached for efficient reuse



HDFS

Read

Read

RDD

Map Reduce

RDD RDD

Cache



• RDDs
• Immutable, partitioned collection of records
• Built through coarse grained, ordered transformations (map, join …)

• Fault Recovery?
• Lineage!

• Log the coarse grained operation applied to a partitioned dataset
• Simply recompute the lost partition if failure occurs!
• No cost if no failure

Solution: Resilient Distributed Datasets (RDDs)



HDFS

Read

Read

RDD

Map Reduce

RDD RDD

Cache

Lineage HDFS
Read Map RDDRDD

Reduce
RDD



HDFS

Read

Read

RDD

Map Reduce

RDD RDD

Cache

Lineage HDFS
Read Map RDDRDD

Reduce
RDD

RDDs track the graph of transformations that 
built them (their lineage) to rebuild lost data 



What can you do with Spark?

• RDD operations
• Transformations e.g., filter, join, map, group-by …
• Actions e.g., count, print …

• Control 
• Partitioning
• Persistence



Partitioning
• PageRank

Links
(url, neighbors)

Ranks
(url, ranks) Joins take place repeatedly

Good partitioning reduces shuffles
Contributions

Ranks
(url, ranks)

Contributions



Generality

• RDDs allow unification of different programming models
• Stream Processing
• Graph Processing
• Machine Learning …..



Gather-Apply-Scatter on GraphX

A B

D C

Vertices Neighbors
A B
A C
B C
D C

Graph Represented In a Table

A B

A C

B C

D C

Triplets



Gather-Apply-Scatter on GraphX

A B

A C

B C

D C

Group-By A

A B

D C

Gather at A



Gather-Apply-Scatter on GraphX

A B

A C

B C

D C

Map

A B

D C

Apply



Gather-Apply-Scatter on GraphX

A B

D C

Scatter

A B

A C

Join

B C

C B

C D

A B

A C

B C

D C

Triplets



Summary

• RDDs provide a simple and efficient programming model
• Generalized to a broad set of applications
• Leverages coarse-grained nature of parallel algorithms for failure 

recovery


