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Why Spark?

• Another system for big data analytics

• Isn’t MapReduce good enough?
• Simplifies batch processing on large commodity clusters



Expensive save to disk for fault tolerance



Why Spark?

• MapReduce can be expensive for some applications e.g.,
• Iterative 
• Interactive

• Lacks efficient data sharing

• Specialized frameworks did evolve for different programming 
models
• Bulk Synchronous Processing (Pregel)
• Iterative MapReduce (Haloop) ….



Solution: Resilient Distributed Datasets (RDDs)

• RDDs
• Immutable, partitioned collection of records
• Built through coarse grained transformations (map, join …)
• Can be cached for efficient reuse
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• RDDs
• Immutable, partitioned collection of records
• Built through coarse grained, ordered transformations (map, join …)

• Fault Recovery?
• Lineage!

• Log the coarse grained operation applied to a partitioned dataset
• Simply recompute the lost partition if failure occurs!
• No cost if no failure

Solution: Resilient Distributed Datasets (RDDs)
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RDDs track the graph of transformations that 
built them (their lineage) to rebuild lost data 



What can you do with Spark?

• RDD operations
• Transformations e.g., filter, join, map, group-by …
• Actions e.g., count, print …

• Control 
• Partitioning
• Persistence
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Generality

• RDDs allow unification of different programming models
• Stream Processing
• Graph Processing
• Machine Learning …..
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Gather-Apply-Scatter on GraphX
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Gather-Apply-Scatter on GraphX
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Gather-Apply-Scatter on GraphX
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Summary

• RDDs provide a simple and efficient programming model
• Generalized to a broad set of applications
• Leverages coarse-grained nature of parallel algorithms for failure 

recovery


