
CS 425 / ECE 428
Distributed Systems

Fall 2023
Aishwarya Ganesan

W/ Indranil Gupta (Indy)
Lecture 22: Scheduling

All slides © IG

• Multiple “tasks” to schedule
– The processes on a single-core OS
– The tasks of a Hadoop job
– The tasks of multiple Hadoop jobs

• Limited resources that these tasks require
– Processor(s)
– Memory
– (Less contentious) disk, network

• Scheduling goals
1. Good throughput or response time for tasks (or jobs)
2. High utilization of resources.

Why Scheduling?

2

Single Processor Scheduling

Task 1
10

Task 2
5

Task 3
3

Arrival Times à 0 6 8

Processor

Task Length Arrival
1 10 0
2 5 6
3 3 8

Which tasks run when?

3

FIFO Scheduling (First-In First-Out)/FCFS

Task 1 Task 2 Task 3

Time à 0 6 8 10 15 18

Processor Task Length Arrival
1 10 0
2 5 6
3 3 8

• Maintain tasks in a queue in order of arrival
• When processor free, dequeue head and schedule it

4

• Average completion time may be high
• For our example on previous slides,

– Average completion time of FIFO/FCFS =
 (Task 1 + Task 2 + Task 3)/3
= (10+15+18)/3
= 43/3
= 14.33

FIFO/FCFS Performance

5

STF Scheduling (Shortest Task First)

Task 1Task 2Task 3

Time à 0 3 8 18

Processor Task Length Arrival
1 10 0
2 5 0
3 3 0

• Maintain all tasks in a queue, in increasing order of running time
• When processor free, dequeue head and schedule

6

• Average completion of STF is the shortest among all
scheduling approaches!

• For our example on previous slides,
– Average completion time of STF =
 (Task 1 + Task 2 + Task 3)/3
= (18+8+3)/3
= 29/3
= 9.66
(versus 14.33 for FIFO/FCFS)

• In general, STF is a special case of priority scheduling
– Instead of using time as priority, scheduler could use user-provided

priority

STF Is Optimal!

7

Round-Robin Scheduling

Time à 0 6 8

Processor

Task Length Arrival
1 10 0
2 5 6
3 3 8

• Use a quantum (say 1 time unit) to run portion of task at queue head
• Pre-empts processes by saving their state, and resuming later
• After pre-empting, add to end of queue

Task 1

15 (Task 3 done)

…

8

• Round-Robin preferable for
– Interactive applications
– User needs quick responses from system

• FIFO/STF preferable for Batch applications
– User submits jobs, goes away, comes back to get result

Round-Robin vs. STF/FIFO

9

• Single processor scheduling algorithms
– FIFO/FCFS
– Shortest task first (optimal!)
– Priority
– Round-robin
– Many other scheduling algorithms out there!

• What about cloud scheduling?
– Next!

Summary

10

Hadoop Scheduling

• A Hadoop job consists of Map tasks and Reduce tasks
• Only one job in entire cluster => it occupies cluster
• Multiple customers with multiple jobs

– Users/jobs = “tenants”
– Multi-tenant system

• => Need a way to schedule all these jobs (and their
constituent tasks)

• => Need to be fair across the different tenants
• Hadoop YARN has two popular schedulers

– Hadoop Capacity Scheduler
– Hadoop Fair Scheduler

Hadoop Scheduling

12

(Hadoop 2.0)

• Contains multiple queues
• Each queue contains multiple jobs
• Each queue guaranteed some portion of the cluster capacity

E.g.,
– Queue 1 is given 80% of cluster
– Queue 2 is given 20% of cluster
– Higher-priority jobs go to Queue 1

• For jobs within same queue, FIFO typically used
• Administrators can configure queues

Hadoop Capacity Scheduler

Source: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
13

• Administrators can configure each queue with limits
– Soft limit: how much % of cluster is the queue guaranteed to occupy
– (Optional) Hard limit: max % of cluster given to the queue

• Elasticity
– A queue allowed to occupy more of cluster if resources free
– But if other queues below their capacity limit, now get full, need to

give these other queues resources

• Pre-emption not allowed!
– Cannot stop a task part-way through
– When reducing % cluster to a queue, wait until some tasks of that

queue have finished

Elasticity in HCS

14

• Queues can be hierarchical
– May contain child sub-queues, which may contain child sub-queues,

and so on
– Child sub-queues can share resources equally

• Scheduling can take memory requirements into account
(memory specified by user)

Other HCS Features

15

• Goal: all jobs get equal share of resources
• When only one job present, occupies entire cluster
• As other jobs arrive, each job given equal % of cluster

– E.g., Each job might be given equal number of cluster-wide YARN
containers

– Each container == 1 task of job

Hadoop Fair Scheduler

Source: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
16

• Divides cluster into pools
– Typically one pool per user

• Resources divided equally among pools
– Gives each user fair share of cluster

• Within each pool, can use either
– Fair share scheduling, or
– FIFO/FCFS
– (Configurable)

Hadoop Fair Scheduler (2)

17

• Some pools may have minimum shares
– Minimum % of cluster that pool is guaranteed

• When minimum share not met in a pool, for a while
– Take resources away from other pools
– By pre-empting jobs in those other pools
– By killing the currently-running tasks of those jobs

• Tasks can be re-started later
• Ok since tasks are idempotent!

– To kill, scheduler picks most-recently-started tasks
• Minimizes wasted work

Pre-emption in HFS

18

• Can also set limits on
– Number of concurrent jobs per user
– Number of concurrent jobs per pool
– Number of concurrent tasks per pool

• Prevents cluster from being hogged by one user/job

Other HFS Features

19

• HCS/HFS use FIFO
– May not be optimal (as we know!)
– Why not use shortest-task-first instead? It’s optimal (as we know!)

• Challenge: Hard to know expected running time of task (before
it’s completed)

• Solution: Estimate length of task
• Some approaches

– Within a job: Calculate running time of task as proportional to size of
its input

– Across tasks: Calculate running time of task in a given job as average
of other tasks in that given job (weighted by input size)

• Lots of recent research results in this area!

Estimating Task Lengths

20

• Hadoop Scheduling in YARN
– Hadoop Capacity Scheduler
– Hadoop Fair Scheduler

• Yet, so far we’ve talked of only one kind of resource
– Either processor, or memory
– How about multi-resource requirements?
– Next!

Summary

21

Dominant-Resource Fair Scheduling

• What about scheduling VMs in a cloud (cluster)?
• Jobs may have multi-resource requirements

– Job 1’s tasks: 2 CPUs, 8 GB
– Job 2’s tasks: 6 CPUs, 2 GB

• How do you schedule these jobs in a “fair” manner?
• That is, how many tasks of each job do you allow the

system to run concurrently?
• What does fairness even mean?

Challenge

23

• Proposed by researchers from U. California Berkeley
• Proposes notion of fairness across jobs with multi-resource

requirements
• They showed that DRF is

– Fair for multi-tenant systems
– Strategy-proof: tenant can’t benefit by lying
– Envy-free: tenant can’t envy another tenant’s allocations

Dominant Resource Fairness (DRF)

24

• DRF is
– Usable in scheduling VMs in a cluster
– Usable in scheduling Hadoop in a cluster

• DRF used in Mesos, an OS intended for cloud
environments

• DRF-like strategies also used some cloud computing
company’s distributed OS’s

Where is DRF Useful?

25

• Our example
– Job 1’s tasks: 2 CPUs, 8 GB
 => Job 1’s resource vector = <2 CPUs, 8 GB>
– Job 2’s tasks: 6 CPUs, 2 GB
 => Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>

How DRF Works

26

• Our example
– Job 1’s tasks: 2 CPUs, 8 GB
 => Job 1’s resource vector = <2 CPUs, 8 GB>
– Job 2’s tasks: 6 CPUs, 2 GB
 => Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>
• Each Job 1’s task consumes % of total CPUs = 2/18 = 1/9
• Each Job 1’s task consumes % of total RAM = 8/36 = 2/9
• 1/9 < 2/9

– => Job 1’s dominant resource is RAM, i.e., Job 1 is more memory-
intensive than it is CPU-intensive

How DRF Works (2)

27

• Our example
– Job 1’s tasks: 2 CPUs, 8 GB
 => Job 1’s resource vector = <2 CPUs, 8 GB>
– Job 2’s tasks: 6 CPUs, 2 GB
 => Job 2’s resource vector = <6 CPUs, 2 GB>

• Consider a cloud with <18 CPUs, 36 GB RAM>
• Each Job 2’s task consumes % of total CPUs = 6/18 = 6/18
• Each Job 2’s task consumes % of total RAM = 2/36 = 1/18
• 6/18 > 1/18

– => Job 2’s dominant resource is CPU, i.e., Job 2 is more CPU-
intensive than it is memory-intensive

How DRF Works (3)

28

• For a given job, the % of its dominant resource type that it
gets cluster-wide, is the same for all jobs

– Job 1’s % of RAM = Job 2’s % of CPU

• Can be written as linear equations, and solved

DRF Fairness

29

• DRF Ensures
– Job 1’s % of RAM = Job 2’s % of CPU

• Solution for our example:
– Job 1 gets 3 tasks each with <2 CPUs, 8 GB>
– Job 2 gets 2 tasks each with <6 CPUs, 2 GB>
• Job 1’s % of RAM

= Number of tasks * RAM per task / Total cluster RAM
= 3*8/36 = 2/3

• Job 2’s % of CPU
= Number of tasks * CPU per task / Total cluster CPUs
= 2*6/18 = 2/3

DRF Solution, For our Example

30

• DRF generalizes to multiple jobs
• DRF also generalizes to more than 2 resource types

– CPU, RAM, Network, Disk, etc.

• DRF ensures that each job gets a fair share of that type of
resource which the job desires the most

– Hence fairness

Other DRF Details

31

• Scheduling very important problem in cloud computing
– Limited resources, lots of jobs requiring access to these resources

• Single-processor scheduling
– FIFO/FCFS, STF, Priority, Round-Robin

• Hadoop scheduling
– Capacity scheduler, Fair scheduler

• Dominant-Resources Fairness

Summary: Scheduling

32

• HW4 released, due 12/1
– Deadline will creep up on you! Start a problem as soon as the topic is discussed

• HW4 and MP4 due soon after Thanksgiving/Fall Break, so please start soon!
• MP3 due Sunday 11/5, demos on 11/6
• Final Exam: See instructions on Piazza

Announcements

33

