
CS 425 / ECE 428
Distributed Systems

Fall 2023
Indranil Gupta (Indy)

w/ Aishwarya Ganesan
Lecture 21: Replication Control

All slides © IG

• Concurrency Control = how to coordinate
multiple concurrent clients executing operations
(or transactions) with a server

Next:
• Replication Control = how to handle operations

(or transactions) when there are objects are
stored at multiple servers, with or without
replication

Server-side Focus

2

• Replication = An object has identical copies,
each maintained by a separate server

– Copies are called “replicas”

• Why replication?
– Fault-tolerance: With k replicas of each object, can

tolerate failure of any (k-1) servers in the system
– Load balancing: Spread read/write operations out over

the k replicas => load lowered by a factor of k compared
to a single replica

– Replication => Higher Availability

Replication: What and Why

3

• If each server is down a fraction f of the time
– Server’s failure probability

• With no replication, availability of object =
= Probability that single copy is up
= (1 – f)

• With k replicas, availability of object =
Probability that at least one replicas is up
= 1 – Probability that all replicas are down
= (1 – f k)

Availability

4

• With no replication, availability of object =
= (1 – f)

• With k replicas, availability of object =
= (1 – f k)

Availability Table

Nines Availability

f=failure
probability

No replication k=3 replicas k=5 replicas

0.1 90% 99.9% 99.999%
0.05 95% 99.9875% 6 Nines
0.01 99% 99.9999% 10 Nines 5

• Challenge is to maintain two properties
1. Replication Transparency

– A client ought not to be aware of multiple copies of
objects existing on the server side

2. Replication Consistency
– All clients see single consistent copy of data, in spite

of replication
– For transactions, guarantee ACID

What’s the Catch?

6

Replication Transparency

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication

transparency

Client
Front End

Client

Requests
(replies flow opposite)

Replicas of an
object O

7

• Two ways to forward updates from front-ends
(FEs) to replica group

– Passive Replication: uses a primary replica (leader or
previously aka “master”)

– Active Replication: treats all replicas identically

• Both approaches use the concept of “Replicated
State Machines”

– Each replica’s code runs the same state machine
– Multiple copies of the same State Machine begun in the

Start state, and receiving the same Inputs in the same
order will arrive at the same State having generated the
same Outputs. [Schneider 1990]

Replication Consistency

8

Passive Replication

Client Front End

Replica 1

Replica 2

Replica 3

Client
Front End

Client

Requests
(replies flow opposite)

Leader (elected leader)

• Leader => total ordering of all updates
• On leader failure, run election

9

Active Replication

Client Front End

Replica 1

Replica 2

Replica 3

Front ends
provide replication

transparency

Client
Front End

Client

Requests
(replies flow opposite)

Multicast
inside

Replica group

10

• Can use any flavor of multicast ordering,
depending on application

– FIFO ordering
– Causal ordering
– Total ordering
– Hybrid ordering

• Total or Hybrid (*-Total) ordering + Replicated
State machines approach

– => all replicas reflect the same sequence of updates to
the object

Active Replication Using Concepts You’ve Learnt
earlier

11

• What about failures?
– Use virtual synchrony (i.e., view synchrony)

• Virtual synchrony with total ordering for
multicasts =>

– All replicas see all failures/joins/leaves and all
multicasts in the same order

– Could also use causal (or even FIFO) ordering if
application can tolerate it

Active Replication Using Concepts You’ve Learnt
earlier (2)

12

• One-copy serializability
– A concurrent execution of transactions in a replicated database

is one-copy-serializable if it is equivalent to a serial execution of
these transactions over a single logical copy of the database.

– (Or) The effect of transactions performed by clients on
replicated objects should be the same as if they had been
performed one at a time on a single set of objects (i.e., 1 replica
per object).

• In a non-replicated system, transactions appear to
be performed one at a time in some order.

– Correctness means serial equivalence of transactions

• When objects are replicated, transaction systems
for correctness need one-copy serializability

Transactions and Replication

13

• Committing transactions with distributed servers

Next

14

Transactions with Distributed Servers

Transaction T
 write(A,1);
 write(B,2);
 …
 write(Y, 25);
 write(Z, 26);
 commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

15

• Transaction T may touch objects that reside on
different servers

• When T tries to commit
– Need to ensure all these servers commit their updates

from T => T will commit
– Or none of these servers commit => T will abort

• What problem is this?

Transactions With Distributed Servers

16

• Transaction T may touch objects that reside on
different servers

• When T tries to commit
– Need to ensure all these servers commit their updates

from T => T will commit
– Or none of these servers commit => T will abort

• What problem is this?
– Consensus!
– (It’s also called the “Atomic Commit problem”)

Transactions With Distributed Servers

17

One-phase Commit

Transaction T
 write(A,1);
 write(B,2);
 …
 write(Y, 25);
 write(Z, 26);
 commit

Object A

Object B

Server 1

Object Y

Object Z

Server 13

.

.

.

Coordinator
Server

.

.

.

• Special server called “Coordinator”
 initiates atomic commit
• Tells other servers to either
 commit or abort 18

• Server with object has no say in whether transaction
commits or aborts
– If object corrupted, it just cannot commit (while other servers

have committed)

• Server may crash before receiving commit message,
with some updates still in memory

One-phase Commit: Issues

19

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

20

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

If any
“No” vote
or timeout
before all
(13) votes

Abort

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit
• Wait! Can’t commit or abort
before receiving next message!

Two-phase Commit

Coordinator
Server … Server 1 Server 13

Prepare

• Save updates to disk
• Respond with “Yes” or “No”

All (13)
“Yes”
votes
received
within
timeout?

Commit
• Commit updates from disk
 to store

OK

• If server voted Yes, it cannot commit unilaterally
before receiving Commit message

• If server voted No, can abort right away (why?)
• To deal with server crashes

– Each server saves tentative updates into permanent storage, right
before replying Yes/No in first phase. Retrievable after crash
recovery.

• To deal with coordinator crashes
– Coordinator logs all decisions and received/sent messages on

disk
– After recovery or new election => new coordinator takes over

Failures in Two-phase Commit

26

• To deal with Prepare message loss
– The server may decide to abort unilaterally after a timeout for

first phase (server will vote No, and so coordinator will also
eventually abort)

• To deal with Yes/No message loss, coordinator aborts
the transaction after a timeout (pessimistic!). It must
announce Abort message to all.

• To deal with Commit or Abort message loss
– Server can poll coordinator (repeatedly)

Failures in Two-phase Commit (2)

27

Atomic Commit
•Can instead use Paxos to decide whether to commit
a transaction or not
•But need to ensure that if any server votes No,
everyone aborts
Ordering updates
•Paxos can also be used by replica group (for an
object) to order all updates – iteratively do:

– Server proposes message for next sequence number
– Group reaches consensus (or not)

Using Paxos in Distributed Servers

28

• Multiple servers in cloud
– Replication for Fault-tolerance
– Load balancing across objects

• Replication Flavors using concepts we learnt
earlier

– Active replication
– Passive replication

• Transactions and distributed servers
– Two phase commit

Summary

29

• HW4 released, due 12/1
– Deadline will creep up on you! Start a problem as soon as the topic is

discussed

• MP3 due Sunday 11/5, demos on 11/6
• Final Exam: See Piazza

Summary

30

