
Distributed Hash Tables
CS425 /ECE428 – DISTRIBUTED SYSTEMS – FALL 2021

Material derived from slides by I. Gupta, M. Harandi,
J. Hou, S. Mitra, K. Nahrstedt, N. Vaidya

Distributed System Organization

• Centralized
• Ring
• Clique
• How well do these work with

1M+ nodes?

Fall'21

Centralized

• Problems?
• Leader a bottleneck

• O(N) load on leader

• Leader election expensive

Fall'21

Ring

• Problems?
• Fragile

• O(1) failures tolerated

• Slow communication
• O(N) messages

Fall'21

Clique

• Problems?
• High overhead

• O(N) state at each node
• O(N2) messages for failure

detection

Fall'21

Distributed Hash Tables

• Middle point between ring and clique
• Scalable and fault-tolerant

• Maintain O(log N) state
• Routing complexity O(log N)
• Tolerate O(N) failures

• Other possibilities:
• State: O(1), routing: O(log N)
• State: O(log N), routing: O(log N / log log N)
• State: O(√N), routing: O(1)

Fall'21

Distributed Hash Table

• A hash table allows you to insert, lookup and delete objects
with keys

• A distributed hash table allows you to do the same in a
distributed setting (objects=files)

• DHT also sometimes called a key-value store when used
within a cloud

• Performance Concerns:
• Load balancing
• Fault-tolerance
• Efficiency of lookups and inserts

Fall'21

Chord

• Intelligent choice of neighbors to reduce latency and
message cost of routing (lookups/inserts)

• Uses Consistent Hashing on node’s (peer’s) address
• (ip_address,port) àhashed id (m bits)
• Called peer id (number between 0 and)
• Not unique but id conflicts very unlikely
• Can then map peers to one of logical points on a circle

Fall'21

m2

12 -m

Ring of peers

Fall'21

N80

N112

N96

N16
0Say m=7

N32

N45

6 nodes

Peer pointers (1): successors

Fall'21

N80

0Say m=7

N32

N45

N112

N96

N16

(similarly predecessors)

Peer pointers (2): finger tables

Fall'21

N80
80 + 20

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

0
Say m=7

N32

N45

ith entry at peer with id n is first peer with id >=

€

n + 2i(mod2m)

N112

N96

N16i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 16

Finger Table at N80

Mapping Values
• Key =

hash(ident)
• m bit string

• Value is stored
at first peer
with id greater
than its key
(mod 2m)

Fall'21

N80

0

N32

N45

Value with key K42
stored here

N112

N96

N16

Search

Fall'21

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

Who has cnn.com/index.html?
(hashes to K42)

N112

N96

N16

Search

Fall'21

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search

Fall'21

N80

0
Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k
if none exist, send query to successor(n)

All “arrows” are RPCs

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Fall'21

Analysis
Search takes O(log(N)) time

Proof
• (intuition): at each step, distance between query and peer-

with-file reduces by a factor of at least 2 (why?)
Takes at most m steps: 2m is at most a constant multiplicative
factor above N, lookup is O(log(N))

• (intuition): after log(N) forwardings, distance to key is at
most 2m / N (why?)
Number of node identifiers in a range of 2m / N
is O(log(N)) with high probability (why?)
So using successors in that range will be ok

Here

Next hop

Key

Analysis (contd.)

• O(log(N)) search time holds for file insertions too (in general for
routing to any key)
• “Routing” can thus be used as a building block for

• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and successor entries correct
• When might these entries be wrong?

• When you have failures

Fall'21

Chord Recap

Each node has an identifier
id=H(address) in the range [0,2m)

Fall'21

N8

N14

N32
N38

N42

N56

Chord Recap

Each node has an identifier
id=H(address) in the range [0,2m)
succ(n) = node with next largest
ID > n, wrapping around mod 2m

Node with id connects to:
• succ(id) (successor)
• succ((id+2i) mod 2m) (fingers)

Fall'21

Chord Recap

Each node has an identifier
id=H(address) in the range [0,2m)
succ(n) = node with next largest
ID > n, wrapping around mod 2m

Node with id connects to:
• succ(id) (successor)
• succ((id+2i) mod 2m) (fingers)
A key k is stored in succ(k)

Fall'21

N8

N14

N32

N38

N42

N56

K54

K38

K10

K24

K30

Chord Recap

Each node has an identifier
id=H(address) in the range [0,2m)
succ(n) = node with next largest ID >
n, wrapping around mod 2m

Node with id connects to:
• succ(id) (successor)
• succ((id+2i) mod 2m) (fingers)
A key k is stored in succ(k)
To find key k, recursively follow the
finger that gets you closest to k

Fall'21

N8

N14

N32

N38

N42

N56

K54

K38

K10

K24

K30

Search under peer failures

Fall'21

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X
X

X

Lookup fails
(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search under peer failures

Fall'21

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X

One solution: maintain r multiple successor entries
In case of failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Search under peer failures (2)

Fall'21

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X
X

Lookup fails
(N45 is dead)

N112

N96

N16

Who has cnn.com/index.html?
(hashes to K42)

Fall'21

Search under peer failures (2)

N80

0Say m=7

N32

N45

File cnn.com/index.html with
key K42 stored here

X

One solution: replicate file/key at r successors and
predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?
(hashes to K42)

Need to deal with dynamic changes

üPeers fail
• New peers join
• Peers leave

• P2P systems have a high rate of churn (node join, leave and failure)

à Need to update successors and fingers, and copy keys

Fall'21

Fall'21

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it

Fall'21

New peers joining

N80

0Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 (and N32)
N32 updates successor to N40
N40 initializes successor to N45, and inits fingers from it
N40 periodically talks to its neighbors to update finger table

Stabilization
Protocol
(to allow for
“continuous”
churn,
multiple
changes)

Lookups

Fall'21

Av
er

ag
e

M
es

sa
ge

s
pe

r L
oo

ku
p

Number of Nodes
log N, as expected

Chord Protocol: Summary

• O(log(N)) memory and lookup costs

• Hashing to distribute filenames uniformly across key/address space

• Allows dynamic addition/deletion of nodes

Fall'21

DHT Deployment

• Many DHT designs
• Chord, Pastry, Tapestry, Koorde, CAN, Viceroy, Kelips, Kademlia, …

• Slow adoption in real world
• Most real-world P2P systems unstructured

• No guarantees
• Controlled flooding for routing

• Kademlia slowly made inroads, now used in many file sharing networks

• Distributed key-value stores adopt some of the ideas of DHTs
• Dynamo, Cassandra, etc.

Fall'21

