
CS 425 / ECE 428
Distributed Systems

Fall 2016
Indranil Gupta (Indy)

Oct 13, 2016
Lecture 16-B: Paxos

All slides © IG

Formal problem statement
•  N processes

•  Each process p has
input variable xp : initially either 0 or 1

output variable yp : initially b (can be changed only once)

•  Consensus problem: design a protocol so that at
the end, either:

1.  All processes set their output variables to 0 (all-0’s)

2.  Or All processes set their output variables to 1 (all-1’s)

What is Consensus?

2	

•  Every process contributes a value
•  Goal is to have all processes decide same (some) value

–  Decision once made can’t be changed

•  There might be other constraints
–  Validity = if everyone proposes same value, then that’s

what’s decided

–  Integrity = decided value must have been proposed by
some process

–  Non-triviality = there is at least one initial system state
that leads to each of the all-0’s or all-1’s outcomes

What is Consensus? (2)

3	

•  Many problems in distributed systems are equivalent to (or
harder than) consensus!

–  Perfect Failure Detection
–  Leader election (select exactly one leader, and every alive

process knows about it)
–  Agreement (harder than consensus)

•  So consensus is a very important problem, and solving it
would be really useful!

•  Consensus is
–  Possible to solve in synchronous systems
–  Impossible to solve in asynchronous systems

Why is it Important?

4	

•  Yes, we can!
•  (Whut?)

Can’t we just solve Consensus?

5	

• Paxos algorithm

–  Most popular “consensus-solving” algorithm
–  Does not solve consensus problem (which

would be impossible, because we already
proved that)

–  But provides safety and eventual liveness
–  A lot of systems use it

•  Zookeeper (Yahoo!), Google Chubby, and
many other companies

• Paxos invented by? (take a guess)

Yes we Can!

6	

•  Paxos invented by Leslie Lamport

•  Paxos provides safety and eventual liveness
–  Safety: Consensus is not violated
–  Eventual Liveness: If things go well sometime in the future

(messages, failures, etc.), there is a good chance consensus
will be reached. But there is no guarantee.

•  FLP result still applies: Paxos is not guaranteed to reach
Consensus (ever, or within any bounded time)

Yes we Can!

7	

•  Paxos has rounds; each round has a unique ballot id
•  Rounds are asynchronous

–  Time synchronization not required
–  If you’re in round j and hear a message from round j+1, abort everything and

move over to round j+1
–  Use timeouts; may be pessimistic

•  Each round itself broken into phases (which are also asynchronous)
–  Phase 1: A leader is elected (Election)
–  Phase 2: Leader proposes a value, processes ack (Bill)
–  Phase 3: Leader multicasts final value (Law)

Political Science 101, i.e., Paxos Groked

8	

•  Potential leader chooses a unique ballot id, higher than seen anything so far
•  Sends to all processes
•  Processes wait, respond once to highest ballot id

–  If potential leader sees a higher ballot id, it can’t be a leader
–  Paxos tolerant to multiple leaders, but we’ll only discuss 1 leader case
–  Processes also log received ballot ID on disk

•  If a process has in a previous round decided on a value v’, it includes value v’ in its response
•  If majority (i.e., quorum) respond OK then you are the leader

–  If no one has majority, start new round
•  (If things go right) A round cannot have two leaders (why?)

Please elect me! OK!

Phase 1 – election

9	

•  Leader sends proposed value v to all
–  use v=v’ if some process already decided in a previous

round and sent you its decided value v’
–  If multiple such v’ received, use latest one

•  Recipient logs on disk; responds OK

Please elect me! OK!
Value v ok?

OK!

Phase 2 – Proposal (Bill)

10	

•  If leader hears a majority of OKs, it lets everyone know of the
decision

•  Recipients receive decision, log it on disk

Please elect me! OK!
Value v ok?

OK!
v!

Phase 3 – Decision (Law)

11	

•  That is, when is consensus reached in the system

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return?

12	

•  If/when a majority of processes hear proposed value and
accept it (i.e., are about to/have respond(ed) with an OK!)

•  Processes may not know it yet, but a decision has been made
for the group
–  Even leader does not know it yet

•  What if leader fails after that?
–  Keep having rounds until some round completes

Please elect me! OK!
Value v ok?

OK!
v!

Which is the point of No-Return?

13	

•  If some round has a majority (i.e., quorum) hearing proposed value v’
and accepting it, then subsequently at each round either: 1) the round
chooses v’ as decision or 2) the round fails

•  Proof:
–  Potential leader waits for majority of OKs in Phase 1
–  At least one will contain v’ (because two majorities or quorums always

intersect)
–  It will choose to send out v’ in Phase 2

•  Success requires a majority, and any two majority sets intersect

Please elect me! OK!
Value v ok?

OK!
v!

Safety

14	

•  Process fails
–  Majority does not include it
–  When process restarts, it uses log to retrieve a past decision (if any) and past-seen ballot ids. Tries to know of

past decisions.
•  Leader fails

–  Start another round
•  Messages dropped

–  If too flaky, just start another round
•  Note that anyone can start a round any time
•  Protocol may never end – tough luck, buddy!

–  Impossibility result not violated
–  If things go well sometime in the future, consensus reached

Please elect me! OK!
Value v ok?

OK!
v!

What could go Wrong?

15	

•  A lot more!

•  This is a highly simplified view of Paxos.
•  See Lamport’s original paper:

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-
simple.pdf

Please elect me! OK!
Value v ok?

OK!
v!

What could go Wrong?

16	

•  Paxos protocol: widely used implementation of a safe,
eventually-live consensus protocol for asynchronous systems

–  Paxos (or variants) used in Apache Zookeeper, Google’s Chubby
system, Active Disk Paxos, and many other cloud computing
systems

Summary

17	

