
CS 425 / ECE 428
Distributed Systems

Fall 2016
Indranil Gupta (Indy)

Oct 4, 2016
Lecture 13: Snapshots

All slides © IG

Here’s a Snapshot

Wikimedia commons

2

Distributed Snapshot

•  More often, each country’s representative
is sitting in their respective capital, and
sending messages to each other (say
emails).

•  How do you calculate a “global snapshot”
in that distributed system?

•  What does a “global snapshot” even
mean?

3

In the Cloud

•  In a cloud: each application or service is running on
multiple servers

•  Servers handling concurrent events and interacting with
each other

•  The ability to obtain a “global photograph” of the system
is important

•  Some uses of having a global picture of the system
–  Checkpointing: can restart distributed application on failure
–  Garbage collection of objects: objects at servers that don’t have

any other objects (at any servers) with pointers to them
–  Deadlock detection: Useful in database transaction systems
–  Termination of computation: Useful in batch computing systems

like Folding@Home, SETI@Home
4

What’s a Global Snapshot?

•  Global Snapshot = Global State =
Individual state of each process in the distributed
system
+
Individual state of each communication channel in the
distributed system

•  Capture the instantaneous state of each process

•  And the instantaneous state of each communication
channel, i.e., messages in transit on the channels

5

Obvious First Solution

•  Synchronize clocks of all processes
•  Ask all processes to record their states at known time t
•  Problems?

–  Time synchronization always has error
•  Your bank might inform you, “We lost the

state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

–  Also, does not record the state of messages in the
channels

•  Again: synchronization not required – causality is
enough!

6

Example
Pi

Pj

Cij

Cji

7

Pi

Pj

Cij

Cji

[$1000,
100 iPhones]

[$600,
50 Androids]

[empty]
[empty]

[Global Snapshot 0]

Pi

Pj

Cij

Cji

[$701,
100 iPhones]

[$600,
50 Androids]

[empty]
[$299, Order Android]

[Global Snapshot 1]

Pi

Pj

Cij

Cji

[$701,
100 iPhones]

[$101,
50 Androids]

[$499, Order iPhone]

[Global Snapshot 2]

[$299, Order Android]

Pi

Pj

Cij

Cji

[$1200, 1 iPhone order from Pj,
100 iPhones]

[$101,
50 Androids]

[empty]

[Global Snapshot 3]

[$299, Order Android]

[
($299, Order Android),
(1 iPhone)
]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$101,
50 Androids]

[Global Snapshot 4]

[empty]

[
(1 iPhone)
]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$400, 1 Android order from Pi,
50 Androids]

[Global Snapshot 5]

[empty]

 [empty]

Pi

Pj

Cij

Cji

[$1200,
99 iPhones]

[$400, 1 Android order from Pi,
50 Androids, 1 iPhone]

[Global Snapshot 6]

[empty]

… and so on …

Moving from State to State

•  Whenever an event happens anywhere in the
system, the global state changes
–  Process receives message
–  Process sends message
–  Process takes a step

•  State to state movement obeys causality
–  Next: Causal algorithm for Global Snapshot

calculation

15

System Model

•  Problem: Record a global snapshot (state for each process,
and state for each channel)

•  System Model:
–  N processes in the system
–  There are two uni-directional communication channels between

each ordered process pair : Pj à Pi and Pi à Pj
–  Communication channels are FIFO-ordered

•  First in First out
–  No failure
–  All messages arrive intact, and are not duplicated

•  Other papers later relaxed some of these assumptions

16

Requirements

•  Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

•  Each process is able to record its own state
–  Process state: Application-defined state or, in the worst

case:
–  its heap, registers, program counter, code, etc. (essentially

the coredump)

•  Global state is collected in a distributed manner
•  Any process may initiate the snapshot

–  We’ll assume just one snapshot run for now

17

Chandy-Lamport Global Snapshot Algorithm

•  First, Initiator Pi records its own state
•  Initiator process creates special messages called “Marker” messages

–  Not an application message, does not interfere with application messages

•  for j=1 to N except i
Pi sends out a Marker message on outgoing
channel Cij

•  (N-1) channels
•  Starts recording the incoming messages on each of the

incoming channels at Pi: Cji (for j=1 to N except i)

18

Chandy-Lamport Global Snapshot Algorithm (2)

Whenever a process Pi receives a Marker message on an incoming channel Cki
•  if (this is the first Marker Pi is seeing)

–  Pi records its own state first
–  Marks the state of channel Cki as “empty”
–  for j=1 to N except i

•  Pi sends out a Marker message on outgoing channel Cij
–  Starts recording the incoming messages on each of the incoming channels at Pi: Cji

(for j=1 to N except i and k)
•  else // already seen a Marker message

–  Mark the state of channel Cki as all the messages that have arrived on it since
recording was turned on for Cki

 19

Slide corrected
after lecture

Chandy-Lamport Global Snapshot Algorithm (3)

The algorithm terminates when
•  All processes have received a Marker

–  To record their own state
•  All processes have received a Marker on all the

(N-1) incoming channels at each
–  To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

20

Example

P2

Time
P1

P3

A B C D E

 E F G

 H I J

Message
Instruction or Step

Example

21

P1 is Initiator:
•  Record local state S1,
•  Send out markers
•  Turn on recording on channels C21, C31

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  First Marker!
•  Record own state as S3
•  Mark C13 state as empty
•  Turn on recording on other incoming C23
•  Send out Markers

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

Duplicate Marker!
State of channel C31 = < >

P2

Time
P1

P3

A B C D E

 E F G

 H I J

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

C31 = < >

•  First Marker!
•  Record own state as S2
•  Mark C32 state as empty
•  Turn on recording on C12
•  Send out Markers

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

C31 = < >

•  S2
•  C32 = < >
•  Record C12

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

C31 = < >

•  S2
•  C32 = < >
•  Record C12

•  Duplicate!
•  C12 = < >

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

C31 = < >

•  S2
•  C32 = < >
•  Record C12

C12 = < >

•  Duplicate!
•  C21 = <message GàD >

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1, Record C21, C31

•  S3
•  C13 = < >
•  Record C23

C31 = < >

•  S2
•  C32 = < >
•  Record C12

C12 = < >

C21 = <message GàD >

•  Duplicate!
•  C23 = < >

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1

•  S3
•  C13 = < >

C31 = < >

•  S2
•  C32 = < >

C12 = < >

C21 = <message GàD >

•  C23 = < >

Algorithm has Terminated

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1

S3 C13 = < >

C31 = < >

S2 C32 = < >
C12 = < >

C21 = <message GàD >

C23 = < >

Collect the Global Snapshot Pieces

Next

•  Global Snapshot calculated by Chandy-Lamport algorithm is
causally correct
–  What?

33

Cuts

•  Cut = time frontier at each process and at each channel
•  Events at the process/channel that happen before the cut are “in

the cut”
–  And happening after the cut are “out of the cut”

34

Consistent Cuts

Consistent Cut: a cut that obeys causality
•  A cut C is a consistent cut if and only if:

for (each pair of events e, f in the system)
–  Such that event e is in the cut C, and if f → e (f happens-before e)

•  Then: Event f is also in the cut C

35

Example

P2

Time
P1

P3

A B C D E

 E F G

 H I J

Consistent Cut Inconsistent Cut
G à D, but only D is in cut

36

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1

•  S3
•  C13 = < >

C31 = < >

•  S2
•  C32 = < >

C12 = < >

C21 = <message GàD >

•  C23 = < >

Our Global Snapshot Example …

•  S3
•  C13 = < >

•  S2
•  C32 = < >

•  C23 = < >

… is causally correct

P2

Time
P1

P3

A B C D E

 E F G

 H I J

S1 C31 = < >

C12 = < >

C21 = <message GàD >

Consistent Cut captured by our Global Snapshot Example
38

In fact…

•  Any run of the Chandy-Lamport Global Snapshot algorithm creates a
consistent cut

39

Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

Let’s quickly look at the proof
• Let ei and ej be events occurring at Pi and Pj,
respectively such that

–  ei à ej (ei happens before ej)

• The snapshot algorithm ensures that
 if ej is in the cut then ei is also in the cut.

•  That is: if ej à <Pj records its state>, then
– it must be true that ei à <Pi records its state>.

 40

Chandy-Lamport Global Snapshot
algorithm creates a consistent cut

•  if ej à <Pj records its state>, then it must be true
that ei à <Pi records its state>.

•  By contradiction, suppose ej à <Pj records its state> and
<Pi records its state> à ei

•  Consider the path of app messages (through other
processes) that go from ei à ej

•  Due to FIFO ordering, markers on each link in above
path will precede regular app messages

•  Thus, since <Pi records its state> à ei , it must be true
that Pj received a marker before ej

•  Thus ej is not in the cut => contradiction

41

Next

•  What is the Chandy-Lamport algorithm used for?

42

“Correctness” in Distributed Systems

•  Can be seen in two ways
•  Liveness and Safety
•  Often confused – it’s important to distinguish from each other

43

Liveness

•  Liveness = guarantee that something good will happen, eventually
–  Eventually == does not imply a time bound, but if you let the

system run long enough, then …

44

Liveness: Examples

•  Liveness = guarantee that something good will happen,
eventually

–  Eventually == does not imply a time bound, but if you let the
system run long enough, then …

•  Examples in Real World
–  Guarantee that “at least one of the atheletes in the 100m final

will win gold” is liveness
–  A criminal will eventually be jailed

•  Examples in a Distributed System
–  Distributed computation: Guarantee that it will terminate
–  “Completeness” in failure detectors: every failure is

eventually detected by some non-faulty process
–  In Consensus: All processes eventually decide on a value 45

Safety

•  Safety = guarantee that something bad will never happen

46

Safety: Examples

•  Safety = guarantee that something bad will never happen
•  Examples in Real World

–  A peace treaty between two nations provides safety
•  War will never happen

–  An innocent person will never be jailed
•  Examples in a Distributed System

–  There is no deadlock in a distributed transaction system
–  No object is orphaned in a distributed object system
–  “Accuracy” in failure detectors
–  In Consensus: No two processes decide on different

values 47

Can’t we Guarantee both?

•  Can be difficult to satisfy both liveness and safety
in an asynchronous distributed system!

–  Failure Detector: Completeness (Liveness) and
Accuracy (Safety) cannot both be guaranteed by
a failure detector in an asynchronous distributed
system

–  Consensus: Decisions (Liveness) and correct
decisions (Safety) cannot both be guaranteed by
any consensus protocol in an asynchronous
distributed system

–  Very difficult for legal systems (anywhere in the
world) to guarantee that all criminals are jailed
(Liveness) and no innocents are jailed (Safety)

48

In the language of Global States

•  Recall that a distributed system moves from one global state to
another global state, via causal steps

•  Liveness w.r.t. a property Pr in a given state S means
–  S satisfies Pr, or there is some causal path of global states from S to

S’ where S’ satisfies Pr

•  Safety w.r.t. a property Pr in a given
state S means
S satisfies Pr, and all global states S’
reachable from S also satisfy Pr

49

Using Global Snapshot Algorithm

•  Chandy-Lamport algorithm can be used to detect global properties that
are stable
–  Stable = once true, stays true forever afterwards

•  Stable Liveness examples
–  Computation has terminated

•  Stable Non-Safety examples
–  There is a deadlock
–  An object is orphaned (no pointers point to it)

•  All stable global properties can be detected using
the Chandy-Lamport algorithm

•  Due to its causal correctness 50

Summary

•  The ability to calculate global snapshots in a
distributed system is very important

•  But don’t want to interrupt running distributed
application

•  Chandy-Lamport algorithm calculates global
snapshot

•  Obeys causality (creates a consistent cut)
•  Can be used to detect stable global properties
•  Safety vs. Liveness

51

Announcements

•  Midterm next Tuesday
•  Locations:

–  DCL 1320: if your last name starts with A-Q
–  1 Noyes 217 (Map): if your last name starts with R-Z

•  Material through lecture 12 (Time and Ordering)

52

