CS 425 / ECE 428
Distributed Systems
Fall 2016

Indranil Gupta (Indy)
Oct 4, 2016

L [3:
ecture 13: Snapshots All slides © IG

HERE'S A SNAPSHOT

Sommet de Paris
pour le soutien au peuple libyen
Samedn 19 mars 201 1

LAY

SN =Nz H;T‘“ 2 1' f
7 i H { “ ’;4, " Y
N g

=) 13 p. ,'.’;

DISTRIBUTED SNAPSHOT

* More often, each country’s representative
1S sitting in their respective capital, and
sending messages to each other (say
emails).

 How do you calculate a “global snapshot”
in that distributed system?

 What does a “global snapshot” even
mean?

In a cloud: each application or service is running on
multiple servers

Servers handling concurrent events and interacting with
each other
The ability to obtain a “global photograph” of the system
is important
Some uses of having a global picture of the system

— Checkpointing: can restart distributed application on failure

— Garbage collection of objects: objects at servers that don’t have
any other objects (at any servers) with pointers to them

— Deadlock detection: Useful in database transaction systems

— Termination of computation: Useful in batch computing systems
like Folding@Home, SETI@Home

WHAT'S A GLOBAL SNAPSHOT?

* Global Snapshot = Global State =

Individual state of each process in the distributed
system

|

Individual state of each communication channel in the
distributed system

» Capture the instantaneous state of each process

* And the instantaneous state of each communication
channel, i.e., messages in transit on the channels

OBvVIOUS FIRST SOLUTION

» Synchronize clocks of all processes
» Ask all processes to record their states at known time ¢
* Problems?

— Time synchronization always has error

* Your bank might inform you, “We lost the
state of our distributed cluster due to a 1 ms
clock skew in our snapshot algorithm.”

— Also, does not record the state of messages in the
channels

« Again: synchronization not required — causality is
enough!

Cji
(B

p; J[$1000,

Cif 100 1Phones]
[empty]
[empty]
Cji
Pj) [$600,
50 Androids]

|Global Snapshot 0]

p; IS701,

Cif 100 1Phones]
| [empty]
[$299, Order Android]
Cji
Pj) [$600,
50 Androids]

[Global Snapshot 1]

Pi [$701,
100 1Phones]

Cyj

[$499, Order iPhone]
[$299, Order Android]

Pj) [$101,

50 Androids]
[Global Snapshot 2]

pi [$1200, 1 iPhone order from Pj,

Cif 100 1Phones]
, [empty]
[$299, Order Android]
Cji
P;j) [$101,
50 Androids]

[Global Snapshot 3]

[

($299, Order Android),

(1 1Phone)
]

Cyj

p; [$1200,
99 1Phones]|

[empty]

P/) [$101,

50 Androids]
[Global Snapshot 4]

p; [$1200,

Cif 99 1Phones]
: [empty]
(1 1Phone)
| Cji
Pj) [$400, 1 Android order from Pi,
50 Androids]

|Global Snapshot 5]

Pi [$1200,

Cif 99 1Phones]
[empty]
[empty]
... and so on ...
Cji

Pj) [$400, 1 Android order from Pi,

50 Androids, 1 1Phone]
[Global Snapshot 6]

MOVING FROM STATE TO STATE

Whenever an event happens anywhere in the
system, the global state changes

— Process receives message
— Process sends message
— Process takes a step
e State to state movement obeys causality

— Next: Causal algorithm for Global Snapshot
calculation

15

SYSTEM MODEL

 Problem: Record a global snapshot (state for each process,
and state for each channel)
 System Model:
— N processes in the system

— There are two uni-directional communication channels between
each ordered process pair : P = Pi and Pi > Pj

— Communication channels are FIFO-ordered
 First in First out
— No failure
— All messages arrive intact, and are not duplicated
» Other papers later relaxed some of these assumptions

16

Snapshot should not interfere with normal
application actions, and it should not require
application to stop sending messages

Each process is able to record its own state

— Process state: Application-defined state or, in the worst
case:

— its heap, registers, program counter, code, etc. (essentially
the coredump)

Global state is collected in a distributed manner

Any process may initiate the snapshot
— We’ll assume just one snapshot run for now

17

CHANDY-LAMPORT GLOBAL SNAPSHOT ALGORITHM

* First, Initiator Pi records its own state
« Initiator process creates special messages called “Marker” messages

— Not an application message, does not interfere with application messages

« forj=Ito N excepti
Pi sends out a Marker message on outgoing
channel C;
* (N-1) channels

the incoming messages on each of the
incoming channels at Pi: C;; (for j=1 to N except i)

18

CHANDY-LAMPORT GLOBAL SNAPSHOT ALGORITHM (2)

Whenever a process Pi receives a Marker message on an incoming channel C,;
« if (this is the first Marker Pi is seeing)
— Pirecords its own state first Slide corrected
— Marks the state of channel C; as “empty” after lecture
— forj=1 to N except i
* Pisends out a Marker message on outgoing channel C;

the incoming messages on each of the incoming channels at Pi: C;,
(for j=1 to N except i and k)

* else // already seen a Marker message

— Mark the state of channel C;, as all the messages that have arrived on it
Chi

19

CHANDY-LAMPORT GLOBAL SNAPSHOT ALGORITHM (3)

The algorithm terminates when
» All processes have received a Marker
— To record their own state

» All processes have received a Marker on all the
(N-1) incoming channels at each

— To record the state of all channels

Then, (if needed), a central server collects all these
partial state pieces to obtain the full global snapshot

20

Pl

P2

P3

EXAMPLE
A B

® Instruction or Step

> Message

21

Pl

P2

P3

7

B

P1 1s Initiator:
 Record local state S1,
 Send out markers

* Turn on recording oEchannels C,;, %1

E

o

E G

Time

Pl

P2

P3

B

S1, Record C,,, C;,

C D E

/
/
/
/

Time

|

» First Marker!

* Record own state as S3

* Mark C; state as empty

* Turn on recording on other incoming C;
 Send out Markers

Sl Record C,,, C31

Pl o1
Time
P2 /‘ <
. /\// \
: C ;=<>

Record C,;

Duplicate Marker!

S1, Record C, ;5G4 State of channel C;;= <>
B D E
Time
P3 / I,
. S3

* Cp=<>
* Record C,;

Pl

P2

P3

B

Sl Record C,]—%7

C =<>

N

\

J

\/

Ci=<>
Record C,;

>
FlI‘St Marker!

Record own state as S2
Mark C;, state as empty
Turn on recording on C,,
Send out Markers

S1, Record C,,sC+; C =<>

\

B
- 4 o
/ Time

P3 =

C;,=<>
Record C,,

C =<>
Record C,;

Pl

P2

P3

Record C,;

* Record C~

B Q D E S
\ Time
| /X/G \ | >
/ W2 J
J 33 ° 52 * " Duplicate!
e Cpu=<> * Cp=<> . Cp,p=<>

e Duplicate!
* C,;=<message G>D >

' M
AV

« Cp=<>

* Record C,; . 1

/
/
/
/
/
/
/
/
/

P3

C,;= <message G>D >
Sl Reeefd—%—]—@ﬁ C3 =<>

TN LT =
NN

P3 2

C <> N < - sz ==

* LT * Reecord C~

* Record € " Duplicate!
e (Cp,=<>

ALGORITHM |-|As TERMINATED (- <message GSD >

C =< >

P "
\ \ \ Time
P2

COLLECT THE GLOBAL SNAPSHOT PIECES _ _ .c0cGoD>

C;,=<>

=i
: h\/W\

C —<>

P3
S3Cy=<>

* Global Snapshot calculated by Chandy-Lamport algorithm is
causally correct

— What?

33

* Cut =time frontier at each process and at each channel

« Events at the process/channel that happen before the cut are “in
the cut”

— And happening after the cut are “out of the cut”

34

Consistent Cut: a cut that obeys causality

« A cut Cis a consistent cut if and only if:
for (each pair of events e, f in the system)
— Such that event e 1s in the cut C, and if f — e (f happens-before ¢)
e Then: Event f 1s also 1n the cut C

35

Pl

P2

P3

EXAMPLE

A B | ---"D>_E
>
! /
I / .
i _ o7 Time
/’—
G >
]
i
1
‘ J
1
@ X >

Consistent Cut

Inconsistent Cut
G - D, but only D 1s in cut.

OUuUR GLOBAL SNAPSHOT EXAMPLE ... O s D

S1 Cy=<>
P1 . . g
Time
E F

P2 3 g
P3 B P

. S2 /-

. S3

-« IS CAUSALLY CORRECT C., - <message GHD >

, S1 C3 [=<>
py ——B . D _E
TSl Time
S
E F G .
P2 7 I >
7 %
7
/ |
' ! \
- - ’ i \\\\
-f- | J
P d] 3
/ .2
e S3
’ ¢ Cp=5> Cp=<>
// * Clj’ =S

Consistent Cut captured by our Global Snapshot Example - Cpu=<>

* Any run of the Chandy-Lamport Global Snapshot algorithm creates a
consistent cut

39

CHANDY-LAMPORT GLOBAL SNAPSHOT

ALGORITHM CREATES A CONSISTENT CUT

Let’s quickly look at the proof

*Let ¢; and ¢; be events occurring at Pi and Pj,
respectively such that

— € 2 ¢ (e happens before ¢;)
*The snapshot algorithm ensures that
if ¢; 18 in the cut then ¢; is also in the cut.
* That 1s: if e. > <Pj records its state>, then

—1t must be true that ¢ <Pi records its state>.

40

CHANDY-LAMPORT GLOBAL SNAPSHOT

ALGORITHM CREATES A CONSISTENT CUT

e ife = <Pjrecords its state>, then it must be true
that ¢ <Pi records its state>.

* By contradiction, suppose ¢; > <Pj records its state> and
<Pi records its state> > e,

* Consider the path of app messages (through other
processes) that go from e; 2 ¢

* Due to FIFO ordering, markers on each link in above
path will precede regular app messages

* Thus, since <Pi records its state> => e, , it must be true
that Pjreceived a marker before e;

e Thus ¢; 1s not in the cut => contradiction

41

* What 1s the Chandy-Lamport algorithm used for?

42

HCORRECTNESS" IN DISTRIBUTED SYSTEMS

« (Can be seen in two ways
* Liveness and Safety
* Often confused — it’s important to distinguish from each other

43

* Liveness = guarantee that something good will happen, eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

44

* Liveness = guarantee that something good will happen,
eventually

— Eventually == does not imply a time bound, but if you let the
system run long enough, then ...

 Examples in Real World

— Guarantee that “at least one of the atheletes in the 100m final
will win gold” is liveness

— A criminal will eventually be jailed

 Examples in a Distributed System
— Distributed computation: Guarantee that it will terminate

— “Completeness” in failure detectors: every failure is
eventually detected by some non-faulty process

— In Consensus: All processes eventually decide on a value 45

« Safety = guarantee that something bad will never happen

46

SAFETY: EXAMPLES

e Safety = guarantee that something bad will never happen
« Examples in Real World

— A peace treaty between two nations provides safety

e War will never happen

— An innocent person will never be jailed
 Examples in a Distributed System

— There is no deadlock in a distributed transaction system

— No object is orphaned in a distributed object system

— “Accuracy” in failure detectors

— In Consensus: No two processes decide on different
values 47

CAN'T WE GUARANTEE BOTH?

« Can be difficult to satisfy both liveness and safety
in an asynchronous distributed system!

— Failure Detector: Completeness (Liveness) and
Accuracy (Safety) cannot both be guaranteed by
a failure detector in an asynchronous distributed
system

— Consensus: Decisions (Liveness) and correct
decisions (Safety) cannot both be guaranteed by
any consensus protocol in an asynchronous
distributed system

— Very difficult for legal systems (anywhere in the
world) to guarantee that all criminals are jailed

(Liveness) and no innocents are jailed (Safety)
48

IN THE LANGUAGE OF GLOBAL STATES

« Recall that a distributed system moves from one global state to
another global state, via causal steps
* Liveness w.r.t. a property Pr in a given state S means

— S satisfies Pr, or there is some causal path of global states from S to
S’ where S’ satisfies Pr

« Safety w.r.t. a property Pr in a given
state S means
S satisfies Pr, and all global states S’
reachable from S also satisfy Pr

49

USING GLOBAL SNAPSHOT ALGORITHM

 Chandy-Lamport algorithm can be used to detect global properties that
are stable

— Stable = once true, stays true forever afterwards
e Stable Liveness examples

— Computation has terminated
* Stable Non-Safety examples

— There is a deadlock

— An object is orphaned (no pointers point to it)

« All stable global properties can be detected using
the Chandy-Lamport algorithm

* Due to its causal correctness 50

» The ability to calculate global snapshots in a
distributed system is very important

* But don’t want to interrupt running distributed
application

e Chandy-Lamport algorithm calculates global
snapshot

« Obeys causality (creates a consistent cut)
» Can be used to detect stable global properties
» Safety vs. Liveness

51

e Midterm next Tuesday

* Locations:
— DCL 1320: if your last name starts with A-Q
— 1 Noyes 217 (Map): if your last name starts with R-Z

* Material through lecture 12 (Time and Ordering)

52

