
CS 425 / ECE 428
Distributed Systems

Fall 2016
Indranil Gupta (Indy)

Sep 29, 2016
Lecture 12: Time and Ordering

All slides © IG

•  You want to catch a bus at 6.05 pm, but your watch is off by
15 minutes

–  What if your watch is Late by 15 minutes?
•  You’ll miss the bus!

–  What if your watch is Fast by 15 minutes?
•  You’ll end up unfairly waiting for a longer time than you

intended
•  Time synchronization is required for both

–  Correctness
–  Fairness

Why Synchronization?

2

Synchronization In The Cloud

•  Cloud airline reservation system
•  Server A receives a client request to purchase last ticket on flight

ABC 123.
•  Server A timestamps purchase using local clock 9h:15m:32.45s,

and logs it. Replies ok to client.
•  That was the last seat. Server A sends message to Server B

saying “flight full.”
•  B enters “Flight ABC 123 full” + its own local clock value

(which reads 9h:10m:10.11s) into its log.
•  Server C queries A’s and B’s logs. Is confused that a client

purchased a ticket at A after the flight became full at B.
•  This may lead to further incorrect actions by C

3

•  End hosts in Internet-based systems (like clouds)
–  Each have their own clocks
–  Unlike processors (CPUs) within one server or

workstation which share a system clock
•  Processes in Internet-based systems follow an

asynchronous system model
–  No bounds on

•  Message delays
•  Processing delays

–  Unlike multi-processor (or parallel) systems which
follow a synchronous system model

Why is it Challenging?

4

•  An Asynchronous Distributed System consists of a number of
processes.

•  Each process has a state (values of variables).
•  Each process takes actions to change its state, which may be an

instruction or a communication action (send, receive).
•  An event is the occurrence of an action.
•  Each process has a local clock – events within a process can be

assigned timestamps, and thus ordered linearly.
•  But – in a distributed system, we also need to know the time

order of events across different processes.

Some Definitions

5

•  Each process (running at some end host) has its own clock.

•  When comparing two clocks at two processes:
•  Clock Skew = Relative Difference in clock values of two processes

•  Like distance between two vehicles on a road

•  Clock Drift = Relative Difference in clock frequencies (rates) of two processes

•  Like difference in speeds of two vehicles on the road

•  A non-zero clock skew implies clocks are not synchronized.

•  A non-zero clock drift causes skew to increase (eventually).

–  If faster vehicle is ahead, it will drift away

–  If faster vehicle is behind, it will catch up and then drift away

Clock Skew vs. Clock Drift

6

•  Maximum Drift Rate (MDR) of a clock
•  Absolute MDR is defined relative to Coordinated Universal

Time (UTC). UTC is the “correct” time at any point of time.
•  MDR of a process depends on the environment.

•  Max drift rate between two clocks with similar MDR is 2 *
MDR

•  Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every: M / (2 * MDR)
time units

–  Since time = distance/speed

How often to Synchronize?

7

•  Consider a group of processes
•  External Synchronization

–  Each process C(i)’s clock is within a bound D of a well-known clock S external to the group
–  |C(i) – S| < D at all times
–  External clock may be connected to UTC (Universal Coordinated Time) or an atomic clock
–  E.g., Cristian’s algorithm, NTP

•  Internal Synchronization
–  Every pair of processes in group have clocks within bound D
–  |C(i) – C(j)| < D at all times and for all processes i, j
–  E.g., Berkeley algorithm

External vs Internal Synchronization

8

•  External Synchronization with D => Internal
Synchronization with 2*D

•  Internal Synchronization does not imply External
Synchronization
–  In fact, the entire system may drift away from the

external clock S!

External vs Internal Synchronization (2)

9

Next

•  Algorithms for Clock Synchronization

10

Cristian’s Algorithm

11

Basics

•  External time synchronization
•  All processes P synchronize with a time server S

P

S

Time

What’s the time?
Here’s the time t!

Check local clock to find time t

Set clock to t

12

What’s Wrong

•  By the time response message is received at P,
time has moved on

•  P’s time set to t is inaccurate!
•  Inaccuracy a function of message latencies
•  Since latencies unbounded in an asynchronous

system, the inaccuracy cannot be bounded

13

P

S

Time

What’s the time?
Here’s the time t!

Check local clock to find time t

 Set clock to t

Cristian’s Algorithm
•  P measures the round-trip-time RTT of message exchange

14

Cristian’s Algorithm (2)

•  P measures the round-trip-time RTT of message exchange
•  Suppose we know the minimum P à S latency min1
•  And the minimum S à P latency min2

–  min1 and min2 depend on Operating system overhead to buffer messages, TCP
time to queue messages, etc.

P

S

Time
What’s the time?

Here’s the time t!

Check local clock to find time t

 Set clock to t
RTT

15

Cristian’s Algorithm (3)
•  P measures the round-trip-time RTT of message exchange
•  Suppose we know the minimum P à S latency min1
•  And the minimum S à P latency min2

–  min1 and min2 depend on Operating system overhead to buffer messages, TCP
time to queue messages, etc.

•  The actual time at P when it receives response is between [t+min2, t+RTT-min1]

P

S

Time
What’s the time?

Here’s the time t!

Check local clock to find time t

 Set clock to t
RTT

16

Cristian’s Algorithm (4)
•  The actual time at P when it receives response is between [t+min2, t+RTT-

min1]
•  P sets its time to halfway through this interval

–  To: t + (RTT+min2-min1)/2
•  Error is at most (RTT-min2-min1)/2

–  Bounded!

P

S

Time
What’s the time?

Here’s the time t!

Check local clock to find time t

 Set clock to t
RTT

17

Gotchas

•  Allowed to increase clock value but should never
decrease clock value
–  May violate ordering of events within the same

process

•  Allowed to increase or decrease speed of clock

•  If error is too high, take multiple readings and
average them

18

NTP = Network Time Protocol

•  NTP Servers organized in a tree
•  Each Client = a leaf of tree
•  Each node synchronizes with its tree parent

Client

Primary servers

Secondary servers

Tertiary servers

19

NTP Protocol

Child

Parent

Time

Let’s start protocol
Message 1

Message 1 send time ts1

Message 2 send time ts2 Message 1 recv time tr1

Message 2 recv time tr2

Message 2 ts1, tr2

20

What the Child Does

•  Child calculates offset between its
clock and parent’s clock

•  Uses ts1, tr1, ts2, tr2
•  Offset is calculated as

o = (tr1 – tr2 + ts2 – ts1)/2

21

Why o = (tr1 - tr2 + ts2 - ts1)/2?

•  Offset o = (tr1 – tr2 + ts2 – ts1)/2
•  Let’s calculate the error
•  Suppose real offset is oreal

–  Child is ahead of parent by oreal
–  Parent is ahead of child by -oreal

•  Suppose one-way latency of Message 1 is L1
(L2 for Message 2)

•  No one knows L1 or L2!
•  Then

tr1 = ts1 + L1 + oreal
tr2 = ts2 + L2 – oreal 22

Why o = (tr1 - tr2 + ts2 - ts1)/2? (2)
•  Then

tr1 = ts1 + L1 + oreal
tr2 = ts2 + L2 – oreal

•  Subtracting second equation from the first
oreal = (tr1 – tr2 + ts2 – ts1)/2 + (L2 – L1)/2
=> oreal = o + (L2 – L1)/2
=> |oreal – o| < |(L2 – L1)/2| < |(L2 + L1)/2|
–  Thus, the error is bounded by the round-trip-
time

23

And yet…

•  We still have a non-zero error!
•  We just can’t seem to get rid of error

–  Can’t, as long as message latencies are non-zero
•  Can we avoid synchronizing clocks altogether, and still be able to

order events?

24

Lamport Timestamps

25

Ordering Events in a Distributed System

•  To order events across processes, trying to sync clocks is one approach
•  What if we instead assigned timestamps to events that were not absolute time?
•  As long as these timestamps obey causality, that

would work
If an event A causally happens before another
event B, then timestamp(A) < timestamp(B)
Humans use causality all the time

E.g., I enter a house only after I unlock it
E.g., You receive a letter only after I send it

26

Logical (or Lamport) Ordering

•  Proposed by Leslie Lamport in the 1970s
•  Used in almost all distributed systems since then
•  Almost all cloud computing systems use some

form of logical ordering of events

27

Logical (or Lamport) Ordering(2)

•  Define a logical relation Happens-Before among pairs of events
•  Happens-Before denoted as →
•  Three rules
1.  On the same process: a → b, if time(a) < time(b) (using the local clock)
2.  If p1 sends m to p2: send(m) → receive(m)
3.  (Transitivity) If a → b and b → c then a → c
•  Creates a partial order among events

–  Not all events related to each other via →

28

Example

P2

Time

Instruction or step

P1

P3

Message

A B C D E

 E F G

 H I J

While P1 and P3 each have an event
labeled E, these are different events as
they occur at different processes.

29

Happens-Before

P2

Time

Instruction or step

P1

P3

Message

•  A à B
•  B à F
•  A à F

A B C D E

 E’ F G

 H I J

Happens-Before (2)

P2

Time

Instruction or step

P1

P3

Message

•  H à G
•  F à J
•  H à J
•  C à J

A B C D E

 E’ F G

 H I J

In practice: Lamport timestamps

•  Goal: Assign logical (Lamport) timestamp to each event
•  Timestamps obey causality
•  Rules

–  Each process uses a local counter (clock) which is an integer
•  initial value of counter is zero

–  A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the event
as its timestamp.

–  A send (message) event carries its timestamp
–  For a receive (message) event the counter is updated by

 max(local clock, message timestamp) + 1
32

Example

P2

Time

Instruction or step

P1

P3

Message
33

P2

Time

Instruction or step

P1

P3

Message

0

0

0

Initial counters (clocks)

Lamport Timestamps

P2

Time

Instruction or step

P1

P3

Message
Message send

ts = 1

ts = 1

Message carries
ts = 1

0

0

0

Lamport Timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

Message carries
ts = 1

ts = max(local, msg) + 1
= max(0, 1)+1

= 2

0

0

0

Lamport Timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

Message carries
ts = 2

2

2
max(2, 2)+1

=3

0

0

0

Lamport Timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3

max(3, 4)+1
=5 0

0

0

Lamport Timestamps

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7 2

0

0

0

Lamport Timestamps

Obeying Causality

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7
•  A à B :: 1 < 2
•  B à F :: 2 < 3
•  A à F :: 1 < 3

A B C D E

 E’ F G

 H I J
2

0

0

0

Obeying Causality (2)

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

 E’ F G

 H I J

•  H à G :: 1 < 4
•  F à J :: 3 < 7
•  H à J :: 1 < 7
•  C à J :: 3 < 7

2

0

0

0

Not always implying Causality

P2

Time

Instruction or step

P1

P3

Message

1

1

2

2 3 4

3 5 6

7

A B C D E

 E’ F G

 H I J

•  ? C à F ? :: 3 = 3
•  ? H à C ? :: 1 < 3
•  (C, F) and (H, C) are pairs of

concurrent events

2

0

0

0

Concurrent Events

•  A pair of concurrent events doesn’t have a causal
path from one event to another (either way, in the
pair)

•  Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events

•  Ok, since concurrent events are not causality related!
•  Remember

E1 à E2 ⇒ timestamp(E1) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) ⇒

 {E1 à E2} OR {E1 and E2 concurrent}

43

Next

•  Can we have causal or logical timestamps from which we can tell if
two events are concurrent or causally related?

44

Vector Timestamps

•  Used in key-value stores like Riak
•  Each process uses a vector of integer clocks
•  Suppose there are N processes in the group 1…N
•  Each vector has N elements
•  Process i maintains vector Vi[1…N]
•  jth element of vector clock at process i, Vi[j], is i’s

knowledge of latest events at process j

45

Assigning Vector Timestamps

•  Incrementing vector clocks
1.  On an instruction or send event at process i, it increments only its ith element

of its vector clock
2.  Each message carries the send-event’s vector timestamp Vmessage[1…N]
3.  On receiving a message at process i:

Vi[i] = Vi[i] + 1

Vi[j] = max(Vmessage[j], Vi[j]) for j ≠ i

46

Example

P2

Time

Instruction or step

P1

P3

Message

A B C D E

 E’ F G

 H I J

47

Vector Timestamps

P2

Time
P1

P3

(0,0,0)

(0,0,0)

(0,0,0)

Initial counters (clocks)

(0,0,0) (1,0,0)

(0,0,0)

 Message(0,0,1)
(0,0,0) (0,0,1)

P2

Time
P1

P3

Vector Timestamps

P2

Time
P1

P3

(0,0,0) (1,0,0)

(0,0,0) (0,1,1)

 Message(0,0,1)
(0,0,0) (0,0,1)

Vector Timestamps

P2

Time
P1

P3

(0,0,0) (1,0,0) (2,0,0)
 Message(2,0,0)

(0,0,0) (0,1,1) (2,2,1)

(0,0,0) (0,0,1)

Vector Timestamps

P2

Time
P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Vector Timestamps

•  VT1 = VT2,
 iff (if and only if)

 VT1[i] = VT2[i], for all i = 1, … , N
•  VT1 ≤ VT2,

 iff VT1[i] ≤ VT2[i], for all i = 1, … , N
•  Two events are causally related iff

 VT1 < VT2, i.e.,
 iff VT1 ≤ VT2 &

 there exists j such that
 1 ≤ j ≤ N & VT1[j] < VT2 [j]

Causally-Related …

53

•  Two events VT1 and VT2 are concurrent
 iff

 NOT (VT1 ≤ VT2) AND NOT (VT2 ≤ VT1)

 We’ll denote this as VT2 ||| VT1

… or Not Causally-Related

54

P2

Time
P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Obeying Causality

•  A à B :: (1,0,0) < (2,0,0)
•  B à F :: (2,0,0) < (2,2,1)
•  A à F :: (1,0,0) < (2,2,1)

A B C D E

 E’ F G

 H I J

55

P2

Time
P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Obeying Causality (2)
A B C D E

 E’ F G

 H I J

•  H à G :: (0,0,1) < (2,3,1)
•  F à J :: (2,2,1) < (5,3,3)
•  H à J :: (0,0,1) < (5,3,3)
•  C à J :: (3,0,0) < (5,3,3)

P2

Time
P1

P3

(0,0,0) (1,0,0) (2,0,0) (3,0,0) (4,3,1) (5,3,1)

(0,0,0) (0,1,1) (2,2,1) (2,3,1)

(0,0,0) (0,0,1) (0,0,2) (5,3,3)

Identifying Concurrent Events
A B C D E

 E’ F G

 H I J

•  C & F :: (3,0,0) ||| (2,2,1)
•  H & C :: (0,0,1) ||| (3,0,0)
•  (C, F) and (H, C) are pairs of concurrent events

Logical Timestamps: Summary

•  Lamport timestamps
–  Integer clocks assigned to events
–  Obeys causality
–  Cannot distinguish concurrent events

•  Vector timestamps
–  Obey causality
–  By using more space, can also identify

concurrent events

58

Time and Ordering: Summary

•  Clocks are unsynchronized in an asynchronous distributed system
•  But need to order events, across processes!
•  Time synchronization

–  Cristian’s algorithm
–  NTP
–  Berkeley algorithm
–  But error a function of round-trip-time

•  Can avoid time sync altogether by instead
assigning logical timestamps to events

59

HW1 Statistics
 (min, max, median, average, stdev)

•  On-campus Undergrads: 0, 80, 71, 65.1, 19.6
•  On-campus Grads: 0, 80, 74, 69.7, 16.4
•  MCS-online: 0, 80, 74.5, 59.9, 31.9
•  MCS-DS: 0, 80, 63, 56.2, 23.1

Reminders
•  (4 cr students) MP2 due this Sunday, Demos on

Monday
–  Signup sheet soon on Piazza

•  (All) HW2 due next Tuesday

