CS 425 / ECE 428
 Distributed Systems Fall 2016

Indranil Gupta (Indy)
 Sep 29, 2016

Lecture 12: Time and Ordering
All slides © IG

Why Synchronization?

- You want to catch a bus at 6.05 pm , but your watch is off by 15 minutes
- What if your watch is Late by 15 minutes?
- You'll miss the bus!
- What if your watch is Fast by 15 minutes?
- You'll end up unfairly waiting for a longer time than you intended
- Time synchronization is required for both
- Correctness
- Fairness

Synchrontzation In The Cloud

- Cloud airline reservation system
- Server A receives a client request to purchase last ticket on flight ABC 123.
- Server A timestamps purchase using local clock $9 \mathrm{~h}: 15 \mathrm{~m}: 32.45 \mathrm{~s}$, and logs it. Replies ok to client.
- That was the last seat. Server A sends message to Server B saying "flight full."
- B enters "Flight ABC 123 full" + its own local clock value (which reads $9 \mathrm{~h}: 10 \mathrm{~m}: 10.11 \mathrm{~s}$) into its log.
- Server C queries A's and B's logs. Is confused that a client purchased a ticket at A after the flight became full at B .
- This may lead to further incorrect actions by C

Why is it Challenging?

- End hosts in Internet-based systems (like clouds)
- Each have their own clocks
- Unlike processors (CPUs) within one server or workstation which share a system clock
- Processes in Internet-based systems follow an asynchronous system model
- No bounds on
- Message delays
- Processing delays
- Unlike multi-processor (or parallel) systems which follow a synchronous system model

Some Definltions

- An Asynchronous Distributed System consists of a number of processes
- Each process has a state (values of variables).
- Each process takes actions to change its state, which may be an instruction or a communication action (send, receive).
- An event is the occurrence of an action.
- Each process has a local clock - events within a process can be assigned timestamps, and thus ordered linearly.
- But - in a distributed system, we also need to know the time order of events across different processes.

Clock Skew vs. Clock Drift

- Each process (running at some end host) has its own clock.
- When comparing two clocks at two processes:
- Clock Skew $=$ Relative Difference in clock values of two processes
- Like distance between two vehicles on a road
- Clock Drift $=$ Relative Difference in clock frequencies (rates) of two processes
- Like difference in speeds of two vehicles on the road
- A non-zero clock skew implies clocks are not synchronized.
- A non-zero clock drift causes skew to increase (eventually).
- If faster vehicle is ahead, it will drift away
- If faster vehicle is behind, it will catch up and then drift away

How often to Synchronize?

- Maximum Drift Rate (MDR) of a clock
- Absolute MDR is defined relative to Coordinated Universal Time (UTC). UTC is the "correct" time at any point of time.
- MDR of a process depends on the environment.
- Max drift rate between two clocks with similar MDR is 2 * MDR
- Given a maximum acceptable skew M between any pair of clocks, need to synchronize at least once every: M / (2 * MDR $)$ time units
- Since time $=$ distance $/$ speed

External vs Internal Synchronization

- Consider a group of processes
- External Synchronization
- Each process C(i)'s clock is within a bound D of a well-known clock S external to the group
- $|\mathrm{C}(\mathrm{i})-\mathrm{S}|<\mathrm{D}$ at all times
- External clock may be connected to UTC (Universal Coordinated Time) or an atomic clock
- E.g., Cristian's algorithm, NTP
- Internal Synchronization
- Every pair of processes in group have clocks within bound D
- $|\mathrm{C}(\mathrm{i})-\mathrm{C}(\mathrm{j})|<\mathrm{D}$ at all times and for all processes i, j
- E.g., Berkeley algorithm

External vs Internal Synchronization (2)

- External Synchronization with $\mathbf{D}=>$ Internal Synchronization with 2*D
- Internal Synchronization does not imply External Synchronization
- In fact, the entire system may drift away from the external clock S!

NEXT

- Algorithms for Clock Synchronization

Cristian's Algorithm

BASICS

- External time synchronization
- All processes \mathbf{P} synchronize with a time server \mathbf{S}

What's Wrong

- By the time response message is received at P , time has moved on
- P's time set to t is inaccurate!
- Inaccuracy a function of message latencies
- Since latencies unbounded in an asynchronous system, the inaccuracy cannot be bounded

CRISTIAN's Algorithm

- P measures the round-trip-time RTT of message exchange

Cristian's Alcorithm (2)

- P measures the round-trip-time RTT of message exchange
- Suppose we know the minimum $P \rightarrow S$ latency min1
- And the minimum $S \rightarrow P$ latency min2
- min1 and min2 depend on Operating system overhead to buffer messages, TCP time to queue messages, etc.

Cristian's Alcorithm (3)

- P measures the round-trip-time RTT of message exchange
- Suppose we know the minimum $\mathrm{P} \rightarrow \mathrm{S}$ latency min1
- And the minimum $\mathrm{S} \rightarrow \mathrm{P}$ latency min2
- min1 and min2 depend on Operating system overhead to buffer messages, TCP time to queue messages, etc.
- The actual time at P when it receives response is between $[t+\min 2, \mathrm{t}+\mathrm{RTT}-\mathrm{min} 1]$

Cristian's Algorithm (4)

- The actual time at P when it receives response is between [$\mathrm{t}+\mathrm{min} 2, \mathrm{t}+\mathrm{RTT}-$ min1]
- P sets its time to halfway through this interval
- To: $\mathrm{t}+(\mathrm{RTT}+\mathrm{min} 2-\min 1) / 2$
- Error is at most (RTT-min2-min1)/2
- Bounded!

GOTCHAS

- Allowed to increase clock value but should never decrease clock value
- May violate ordering of events within the same process
- Allowed to increase or decrease speed of clock
- If error is too high, take multiple readings and average them

NTP = Network Time Protocol

- NTP Servers organized in a tree
- Each Client = a leaf of tree
- Each node synchronizes with its tree parent

NTP Protocol

What the Child Does

- Child calculates offset between its clock and parent's clock
- Uses ts1, trl, ts2, tr2
- Offset is calculated as

$$
o=(t r 1-t r 2+t s 2-t s 1) / 2
$$

WHY o = (tr1 - tr2 + ts2 - ts1)/2?

- \quad Offset $o=(t r 1-t r 2+t s 2-t s 1) / 2$
- Let's calculate the error
- Suppose real offset is oreal
- Child is ahead of parent by oreal
- Parent is ahead of child by -oreal
- Suppose one-way latency of Message 1 is $L 1$
(L2 for Message 2)
- No one knows $\mathbf{L 1}$ or $\mathbf{L 2}$!
- Then

$$
\begin{aligned}
& \operatorname{tr} 1=t s 1+L 1+\text { oreal } \\
& \operatorname{tr} 2=t s 2+L 2-\text { oreal }
\end{aligned}
$$

WHY o = (tr1 - tr2 + ts2 - ts1)/2? (2)

- Then

$$
\begin{aligned}
& t r 1=t s 1+L 1+\text { oreal } \\
& t r 2=t s 2+L 2-\text { oreal }
\end{aligned}
$$

- Subtracting second equation from the first

$$
\begin{aligned}
& \text { oreal }=(t r 1-t r 2+t s 2-t s 1) / 2+(L 2-L 1) / 2 \\
& =>\text { oreal }=o+(L 2-L 1) / 2 \\
& =>\mid \text { oreal }-o|<|(L 2-L 1) / 2|<|(L 2+L 1) / 2|
\end{aligned}
$$

- Thus, the error is bounded by the round-triptime

AND YET...

- We still have a non-zero error!
- We just can't seem to get rid of error
- Can't, as long as message latencies are non-zero
- Can we avoid synchronizing clocks altogether, and still be able to order events?

LAMPORT TIMESTAMPS

Ordering Events in a Distributied System

- To order events across processes, trying to sync clocks is one approach
- What if we instead assigned timestamps to events that were not absolute time?
- As long as these timestamps obey causality, that would work

If an event A causally happens before another event B , then timestamp (A) $<$ timestamp (B)
Humans use causality all the time
E.g., I enter a house only after I unlock it
E.g., You receive a letter only after I send it

Logical (or Lamport) Ordering

- Proposed by Leslie Lamport in the 1970s
- Used in almost all distributed systems since then
- Almost all cloud computing systems use some form of logical ordering of events

Logical (or Lamport) Ordering(2)

- Define a logical relation Happens-Before among pairs of events
- Happens-Before denoted as \rightarrow
- Three rules

1. On the same process: $a \rightarrow b$, if time $(a)<$ time (b) (using the local clock)
2. If p 1 sends m to $\mathrm{p} 2: \operatorname{send}(m) \rightarrow \operatorname{receive}(m)$
3. (Transitivity) If $a \rightarrow b$ and $b \rightarrow c$ then $a \rightarrow c$

- Creates a partial order among events
- Not all events related to each other via \rightarrow

EXAMPLE

While P1 and P3 each have an event labeled E , these are different events as they occur at different processes.

Happens-Before

Happens-Before (2)

IN PRACTICE LAMPORT TIMESTAMPS

- Goal: Assign logical (Lamport) timestamp to each event
- Timestamps obey causality
- Rules
- Each process uses a local counter (clock) which is an integer
- initial value of counter is zero

A process increments its counter when a send or an instruction happens at it. The counter is assigned to the event as its timestamp.
A send (message) event carries its timestamp
For a receive (message) event the counter is updated by $\max ($ local clock, message timestamp $)+1$

ExAMPLE

LaMPORT TIMESTAMPS

Obeying Causality

Obeying Causality (2)

Not always implying Causality

Concurrent Events

- A pair of concurrent events doesn't have a causal path from one event to another (either way, in the pair)
- Lamport timestamps not guaranteed to be ordered or unequal for concurrent events
- Ok, since concurrent events are not causality related!
- Remember
$\mathrm{E} 1 \rightarrow \mathrm{E} 2 \Rightarrow$ timestamp(E1) $<$ timestamp (E2), BUT
timestamp(E1) < timestamp (E2) \Rightarrow
$\{\mathrm{E} 1 \rightarrow \mathrm{E} 2\}$ OR $\{\mathrm{E} 1$ and E 2 concurrent $\}$

Next

- Can we have causal or logical timestamps from which we can tell if two events are concurrent or causally related?

Vector TIMESTAMPS

- Used in key-value stores like Riak
- Each process uses a vector of integer clocks
- Suppose there are N processes in the group 1...N
- Each vector has N elements
- Process i maintains vector $\mathbf{V}_{i}[1 \ldots N]$
- j th element of vector clock at process $i, \mathrm{~V}_{i}[j]$, is i 's knowledge of latest events at process j

Assigning Vector Timestamps

- Incrementing vector clocks

1. On an instruction or send event at process i, it increments only its i th element of its vector clock
2. Each message carries the send-event's vector timestamp $\mathrm{V}_{\text {message }}[1 \ldots N]$
3. On receiving a message at process i :

$$
\begin{aligned}
& \mathbf{V}_{i}[i]=\mathbf{V}_{i}[i]+1 \\
& \mathbf{V}_{i}[j]=\max \left(\mathbf{V}_{\text {message }}[j], \mathbf{V}_{i}[j]\right) \text { for } j \neq i
\end{aligned}
$$

EXAMPLE

Vector Timestamps

Initial counters (clocks)

Vector Timestamps

Vector Timestamps

Vector Timestamps

Vector Timestamps

Causally-Related ..

- $\mathrm{VT}_{1}=\mathrm{VT}_{2}$,

$$
\begin{aligned}
& \text { iff (if and only if) } \\
& \qquad \mathrm{VT}_{1}[i]=\mathrm{VT}_{2}[i], \text { for all } i=1, \ldots, \mathrm{~N}
\end{aligned}
$$

- $\mathrm{VT}_{1} \leq \mathrm{VT}_{2}$,

$$
\text { iff } \mathrm{VT}_{1}[i] \leq \mathrm{VT}_{2}[i] \text {, for all } i=1, \ldots, \mathrm{~N}
$$

- Two events are causally related iff

$$
\begin{aligned}
& \mathrm{VT}_{1}<\mathrm{VT}_{2} \text {, i.e., } \\
& \text { iff } \mathrm{VT}_{1} \leq \mathrm{VT}_{2} \& \\
& \text { there exists } j \text { such that } \\
& \quad 1 \leq j \leq N \& \mathrm{VT}_{1}[j]<\mathrm{VT}_{2}[j]
\end{aligned}
$$

.. OR Not Causally-Related

- Two events VT_{1} and VT_{2} are concurrent iff
$\operatorname{NOT}\left(\mathrm{VT}_{1} \leq \mathrm{VT}_{2}\right)$ AND NOT $\left(\mathrm{VT}_{2} \leq \mathrm{VT}_{1}\right)$
We'll denote this as $\mathrm{VT}_{2}| | \mid \mathrm{VT}_{1}$

Obeying Causality

- $\mathrm{A} \rightarrow \mathrm{B}::(1,0,0)<(2,0,0)$
- $\mathrm{B} \rightarrow \mathrm{F}::(2,0,0)<(2,2,1)$
- $\mathrm{A} \rightarrow \mathrm{F}::(1,0,0)<(2,2,1)$

Obeying Causality (2)

Identifying Concurrant Events

- C \& F : $:(\underline{3}, 0,0)| | \mid(2,2, \underline{1})$
- $\mathrm{H} \& \mathrm{C}::(0,0, \underline{1})| | \mid(\underline{3}, 0,0)$
- (C,F) and (H, C) are pairs of concurrent events

Locical Timestamps: Summary

- Lamport timestamps
- Integer clocks assigned to events
- Obeys causality
- Cannot distinguish concurrent events
- Vector timestamps
- Obey causality
- By using more space, can also identify concurrent events

Time and Orderinge Summary

- Clocks are unsynchronized in an asynchronous distributed system
- But need to order events, across processes!
- Time synchronization
- Cristian's algorithm
- NTP
- Berkeley algorithm
- But error a function of round-trip-time
- Can avoid time sync altogether by instead assigning logical timestamps to events

HW/1 Statistics

(min, max, median, average, stdev)

- On-campus Undergrads:
$0,80,71,65.1,19.6$
- On-campus Grads:
$0,80,74,69.7,16.4$
- MCS-online:
- MCS-DS:
$0,80,74.5,59.9,31.9$
$0,80,63,56.2,23.1$

Reminders

- (4 cr students) MP2 due this Sunday, Demos on Monday
- Signup sheet soon on Piazza
- (All) HW2 due next Tuesday

