
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)
Lecture 9: Multicast

Sep 22, 2015 All slides © IG

Multicast Problem

•  Multicast à message sent to a group of
processes

•  Broadcast à message sent to all
processes (anywhere)

•  Unicast à message sent from one
sender process to one receiver process

Other Communication Forms

•  A widely-used abstraction by almost all cloud systems
•  Storage systems like Cassandra or a database

–  Replica servers for a key: Writes/reads to the key are multicast within the replica group
–  All servers: membership information (e.g., heartbeats) is multicast across all servers in

cluster
•  Online scoreboards (ESPN, French Open, FIFA World Cup)

–  Multicast to group of clients interested in the scores
•  Stock Exchanges

–  Group is the set of broker computers
–  Groups of computers for High frequency Trading

•  Air traffic control system
–  All controllers need to receive the same updates in the same order

Who Uses Multicast?

•  Determines the meaning of “same order” of
multicast delivery at different processes in the group

•  Three popular flavors implemented
 by several multicast protocols

1.  FIFO ordering
2.  Causal ordering
3.  Total ordering

Multicast Ordering

•  Multicasts from each sender are received in
the order they are sent, at all receivers

•  Don’t worry about multicasts from
different senders

•  More formally
–  If a correct process issues (sends)

multicast(g,m) to group g and then
multicast(g,m’), then every correct process
that delivers m’ would already have delivered
m.

1. FIFO ordering

M1:1 and M1:2 should be received in that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

FIFO Ordering: Example

P2

Time
P1

P3

M1:1 M1:2

P4

M3:1

•  Multicasts whose send events are
causally related, must be received in the
same causality-obeying order at all
receivers

•  Formally
–  If multicast(g,m) à multicast(g,m’)

then any correct process that delivers
m’ would already have delivered m.

–  (à is Lamport’s happens-before)

2. Causal Ordering

M3:1 à M3:2, and so should be received in that order at each receiver
M1:1 à M3:1, and so should be received in that order at each receiver
M3:1 and M2:1 are concurrent and thus ok to be received in different orders at

 different receivers

Causal Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

•  Causal Ordering => FIFO Ordering
•  Why?

–  If two multicasts M and M’ are sent by the same
process P, and M was sent before M’, then M à
M’

–  Then a multicast protocol that implements
causal ordering will obey FIFO ordering since
M à M’

•  Reverse is not true! FIFO ordering does not
imply causal ordering.

Causal vs. FIFO

•  Group = set of your friends on a social
network

•  A friend sees your message m, and she
posts a response (comment) m’ to it
–  If friends receive m’ before m, it wouldn’t

make sense
–  But if two friends post messages m” and n”

concurrently, then they can be seen in any
order at receivers

•  A variety of systems implement causal
ordering: Social networks, bulletin boards,
comments on websites, etc.

Why Causal at All?

•  Also known as “Atomic Broadcast”
•  Unlike FIFO and causal, this does not pay

attention to order of multicast sending
•  Ensures all receivers receive all multicasts in

the same order
•  Formally

–  If a correct process P delivers message
m before m’ (independent of the
senders), then any other correct
process P’ that delivers m’ would
already have delivered m.

3. Total Ordering

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2
May need to delay delivery of some messages

Total Ordering: Example

P2

Time
P1

P3

M1:1

P4

M3:1 M3:2

M2:1

•  Since FIFO/Causal are
orthogonal to Total, can have
hybrid ordering protocols too
–  FIFO-total hybrid protocol

satisfies both FIFO and total
orders

–  Causal-total hybrid protocol
satisfies both Causal and total
orders

Hybrid Variants

•  That was what ordering is
•  But how do we implement

each of these orderings?

Implementation?

•  Each receiver maintains a per-sender
sequence number (integers)
–  Processes P1 through PN
–  Pi maintains a vector of sequence

numbers Pi[1…N] (initially all
zeroes)

–  Pi[j] is the latest sequence number
Pi has received from Pj

FIFO Multicast: Data Structures

•  Send multicast at process Pj:
–  Set Pj[j] = Pj[j] + 1
–  Include new Pj[j] in multicast message as

its sequence number
•  Receive multicast: If Pi receives a multicast

from Pj with sequence number S in message
–  if (S == Pi[j] + 1) then

•  deliver message to application
•  Set Pi[j] = Pi[j] + 1

–  else buffer this multicast until above
condition is true

FIFO Multicast: Updating Rules

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

?

[1,0,0,0]

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

FIFO Ordering: Example

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

?

FIFO Ordering: Example

P2

Time
P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]
Deliver!

P1, seq: 1

[1,0,0,0]
Deliver!

[0,0,0,0]
Buffer!

P1, seq: 2

[1,0,0,0] [2,0,0,0]

[2,0,0,0]
Deliver!

[1,0,0,0]
Deliver this!
Deliver buffered <P1, seq:2>
Update [2,0,0,0]

P3, seq: 1
[2,0,1,0]

[2,0,1,0]
Deliver!

[2,0,1,0]
Deliver!
[1,0,1,0]
Deliver!

[2,0,1,0]
Deliver!

FIFO Ordering: Example

•  Ensures all receivers receive all
multicasts in the same order

•  Formally
–  If a correct process P delivers

message m before
m’ (independent of the
senders), then any other correct
process P’ that delivers m’
would already have delivered m.

Total Ordering

•  Special process elected as leader or sequencer
•  Send multicast at process Pi:

–  Send multicast message M to group and sequencer
•  Sequencer:

–  Maintains a global sequence number S (initially 0)
–  When it receives a multicast message M, it sets S = S + 1, and

multicasts <M, S>
•  Receive multicast at process Pi:

–  Pi maintains a local received global sequence number Si (initially 0)
–  If Pi receives a multicast M from Pj, it buffers it until it both

1.  Pi receives <M, S(M)> from sequencer, and
2.  Si + 1 = S(M)
•  Then deliver it message to application and set Si = Si + 1

Sequencer-based Approach

•  Multicasts whose send events are
causally related, must be received in
the same causality-obeying order at
all receivers

•  Formally
–  If multicast(g,m) à multicast(g,m’)

then any correct process that
delivers m’ would already have
delivered m.

–  (à is Lamport’s happens-before)

Causal Ordering

•  Each receiver maintains a vector of
per-sender sequence numbers
(integers)
–  Similar to FIFO Multicast,

but updating rules are different
–  Processes P1 through PN
–  Pi maintains a vector Pi[1…N] (initially

all zeroes)
–  Pi[j] is the latest sequence number Pi

has received from Pj

Causal Multicast: Datastructures

•  Send multicast at process Pj:
–  Set Pj[j] = Pj[j] + 1
–  Include new entire vector Pj[1…N] in multicast message as its sequence number

•  Receive multicast: If Pi receives a multicast from Pj with vector
 M[1…N] (= Pj[1…N]) in message, buffer it until both:

1.  This message is the next one Pi is expecting from Pj, i.e.,
•  M[j] = Pi[j] + 1

2.  All multicasts, anywhere in the group, which happened-before M have been
received at Pi, i.e.,

•  For all k ≠ j: M[k] ≤ Pi[k]
•  i.e., Receiver satisfies causality

3.  When above two conditions satisfied, deliver M to application and set Pi[j] = M[j]

Causal Multicast: Updating Rules

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Causal Ordering: Example

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Causal Ordering: Example

Time

P2

P1

P3

P4

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[0,0,0,0]

[1,0,0,0]

[1,0,0,0]
Deliver!

[1,0,0,0]
Deliver!

[1,1,0,0]

[1,1,0,0]
Deliver!

Missing 1 from P1
Buffer!

[1,0,0,1]

Deliver!
Receiver satisfies causality

Deliver!
Receiver satisfies causality

Missing 1 from P1
Buffer!

Deliver P1’s multicast
Receiver satisfies causality for buffered multicasts

Deliver P2’s buffered multicast
Deliver P4’s buffered multicast

Deliver!

•  Ordering of multicasts affects correctness
of distributed systems using multicasts

•  Three popular ways of implementing
ordering
–  FIFO, Causal, Total

•  And their implementations
•  What about reliability of multicasts?
•  What about failures?

Summary: Multicast Ordering

•  Reliable multicast loosely says that
every process in the group receives
all multicasts
–  Reliability is orthogonal to ordering
–  Can implement Reliable-FIFO, or

Reliable-Causal, or Reliable-Total, or
Reliable-Hybrid protocols

•  What about process failures?
•  Definition becomes vague

Reliable Multicast

•  Need all correct (i.e., non-
faulty) processes to receive the
same set of multicasts as all
other correct processes
– Faulty processes stop anyway,

so we won’t worry about them

Reliable Multicast (under failures)

•  Let’s assume we have reliable unicast
(e.g., TCP) available to us

•  First-cut: Sender process (of each multicast
M) sequentially sends a reliable unicast
message to all group recipients

•  First-cut protocol does not satisfy reliability
–  If sender fails, some correct processes

might receive multicast M, while other
correct processes might not receive M

Implementing Reliable Multicast

•  Trick: Have receivers help the sender
1. Sender process (of each multicast M)

sequentially sends a reliable unicast
message to all group recipients

2. When a receiver receives multicast
M, it also sequentially sends M to all
the group’s processes

REALLY Implementing Reliable Multicast

•  Not the most efficient multicast protocol,
but reliable

•  Proof is by contradiction
•  Assume two correct processes Pi and Pj are so

that Pi received a multicast M and Pj did not
receive that multicast M
–  Then Pi would have sequentially sent the

multicast M to all group members, including Pj,
and Pj would have received M

–  A contradiction
–  Hence our initial assumption must be false
–  Hence protocol preserves reliability

Analysis

•  Attempts to preserve multicast ordering
and reliability in spite of failures

•  Combines a membership protocol with a
multicast protocol

•  Systems that implemented it (like Isis)
have been used in NYSE, French Air
Traffic Control System, Swiss Stock
Exchange

Virtual Synchrony or View Synchrony

•  Each process maintains a membership list
•  The membership list is called a View
•  An update to the membership list is called a View Change

–  Process join, leave, or failure
•  Virtual synchrony guarantees that all view changes are delivered in the same

order at all correct processes
–  If a correct P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

then
–  Any other correct process receives the same sequence of view changes (after it joins the

group)
•  P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

•  Views may be delivered at different physical times at processes,
but they are delivered in the same order

Views

•  A multicast M is said to be “delivered in a view V at process Pi” if
–  Pi receives view V, and then sometime before Pi receives the next view it

delivers multicast M
•  Virtual synchrony ensures that

1.  The set of multicasts delivered in a given view is the same set at all
correct processes that were in that view

•  What happens in a View, stays in that View
2.  The sender of the multicast message also belongs to that view
3.  If a process Pi does not deliver a multicast M in view V while other

processes in the view V delivered M in V, then Pi will be forcibly removed
from the next view delivered after V at the other processes

VSync Multicasts

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony
Crash

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2}

View{P1,P2}

M1

M2

M3

Satisfies virtual synchrony
Crash

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2 (not delivered at P2)

M3

Satisfies virtual synchrony

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Does not satisfy virtual synchrony

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1,P2,P3}

View{P1,P2,P3}

View{P1,P2,P3}

M1

M2

M3

Satisfies virtual synchrony

•  Again, orthogonal to virtual synchrony
•  The set of multicasts delivered in a

view can be ordered either
–  FIFO
–  Or Causally
–  Or Totally
–  Or using a hybrid scheme

What about Multicast Ordering?

•  Called “virtual synchrony” since in spite
of running on an asynchronous network,
it gives the appearance of a synchronous
network underneath that obeys the same
ordering at all processes

•  So can this virtually synchronous system
be used to implement consensus?

•  No! VSync groups susceptible to
partitioning
–  E.g., due to inaccurate failure detections

About that name

Time

P2

P1

P3

P4

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

View{P1,P2,P3,P4}

Crash

View{P1}

View{P2, P3}

View{P2,P3}

M1

M2

M3

Partitioning in View synchronous systems

•  Multicast an important building
block for cloud computing systems

•  Depending on application need,
can implement
–  Ordering
–  Reliability
–  Virtual synchrony

Summary

•  HW1 due this Thursday at the
beginning of lecture

•  MP1 has been released, Due
9/28

Announcements

