CS 425 / ECE 428
Distributed Systems
Fall 2015

Indranil Gupta (Indy)
Lecture 9: Multicast
Sep 22, 2015 All slides © 1G

MuLTICAST PROBLEM

Node with a piece of information \
to be communicated to everyone

\ O
@

Distributed Group
@ >of “Nodes” =

Processes at
Internet-based host

OTHER COMMUNICATION FORMS

* Multicast = message sent to a group of
processes

* Broadcast 2 message sent to all
processes (anywhere)

« Unicast = message sent from one
sender process to one receiver process

A widely-used abstraction by almost all cloud systems

Storage systems like Cassandra or a database

— Replica servers for a key: Writes/reads to the key are multicast within the replica group

— All servers: membership information (e.g., heartbeats) is multicast across all servers in
cluster

Online scoreboards (ESPN, French Open, FIFA World Cup)

— Multicast to group of clients interested in the scores

Stock Exchanges
— Group is the set of broker computers
— Groups of computers for High frequency Trading

Air traffic control system
— All controllers need to receive the same updates in the same order

MULTICAST ORDERING

e Determines the meaning of “same order” of
multicast delivery at different processes in the group

» Three popular flavors implemented
by several multicast protocols
1. FIFO ordering
2. Causal ordering
3. Total ordering

1. FIFO ORDERING

» Multicasts from each sender are received in
the order they are sent, at all receivers

e Don’t worry about multicasts from
different senders

e More formally

— If a correct process issues (sends)
multicast(g,m) to group g and then
multicast(g,m ’), then every correct process
that delivers m’ would already have delivered
m.

Pl

P2

P3

P4

FIFO Ordering: Example

Time

M1:1 and M1:2 should be received in that order at each receiver
Order of delivery of M3:1 and M1:2 could be different at different receivers

2. CAUSAL ORDERING

* Multicasts whose send events are
causally related, must be received 1n the
same causality-obeying order at all
reCe1vers

* Formally

— If multicast(g,m) = multicast(g,m’)
then any correct process that delivers
m’ would already have delivered m.

— (=2 is Lamport’s happens-before)

Pl

P2

P3

P4

Causal Ordermg Example

M3:1 - M3:2, and so should be received in that ordeMeceiver
M1:1 = M3:1, and so should be received in that order at each receiver

M3:1 and M2:1 are concurrent and thus ok to be received in different orders at
different receivers

CausAL vs. FIFO

« Causal Ordering => FIFO Ordering
¢ Why?
— If two multicasts M and M’ are sent by the same
process P, and M was sent before M’, then M -
M’
— Then a multicast protocol that implements

causal ordering will obey FIFO ordering since
M->M

« Reverse 1s not true! FIFO ordering does not
imply causal ordering.

WHY CAusSAL AT ALL?

» Group = set of your friends on a social
network

» A friend sees your message m, and she
posts a response (comment) m’ to it
— If friends receive m’ before m, it wouldn’t
make sense

— But if two friends post messages m” and n”
concurrently, then they can be seen in any
order at receivers

* A variety of systems implement causal
ordering: Social networks, bulletin boards,
comments on websites, etc.

3. TOTAL ORDERING

 Also known as “Atomic Broadcast”

» Unlike FIFO and causal, this does not pay
attention to order of multicast sending

 Ensures all receivers receive all multicasts in
the same order

* Formally

— If a correct process P delivers message
m before m’ (independent of the
senders), then any other correct
process P’ that delivers m” would
already have delivered m.

Pl

P2

P3

P4

Total Ordering: Example

N

Time

\

The order of receipt of multicasts is the same at all processes.
M1:1, then M2:1, then M3:1, then M3:2

May need to delay delivery of some messages

HYBRID VARIANTS

* Since FIFO/Causal are
orthogonal to Total, can have
hybrid ordering protocols too

— FIFO-total hybrid protocol
satisfies both FIFO and total

orders

— Causal-total hybrid protocol
satisfies both Causal and total

orders

IMPLEMENTATION?

* That was what ordering 1s

* But #ow do we implement
each of these orderings?

FIFO MuLTICAST: DATA STRUCTURES

» FEach receiver maintains a per-sender
sequence number (integers)

— Processes P/ through PN

— Pi maintains a vector of sequence
numbers Pi[1...N] (initially all
ZEeroes)

— Pi[/j] 1s the latest sequence number
Pi has received from Pj

FIFO MuLTICAST: UPDATING RULES

e Send multicast at process Py:
— Set Pj[j]=Pj[j] + 1
— Include new Pj[j] in multicast message as
its sequence number

 Receive multicast: If Pi receives a multicast
from P;j with sequence number S in message
— 1if (S==Pi[j] + 1) then
 deliver message to application
« Set Pi[j] = Pi[j] + 1
— else buffer this multicast until above
condition 1S true

FIFO Ordering: Example

Pl
[0,0,0,0]

Time

P2
[0,0,0,0]

P3
[0,0,0,0]

P4
10,0,0,0]

11,0,0,0]

Pl >

P2 >
[0,0,0,0] [1,0,8,0]
Delivex!

>

P3

[0.0,0,0] \ ? \

P4 >
11,0,0,0]

(0520400 Deliver!

FIFO Ordering: Example

B 11.0,0.0] 12.0,0.0] R
10,0,0,0] 1,seq: 1

P2
[0,0,0,0] [1,0,0,0]
Deliéé\!
P3 :,. >
10,0,0,0] [0,0,0,0]
Buffer!
>

P4 1.0.0 0]
[1,0,0,0] [1,0,0,
[0,0,0,0] Deliver! Deliver this!
. Deliver buffered <P1, seq:2>
FIFO Ordering: Example Update [2,0,0,0]

Time

Pl
0.0.001 P 20,001/ Time
eliver!
P2 : R
[0,0,0,0] [1,0,8,0]
Deliéé\!
P3 ,-' R
[0,0,0,0] 10,0,00] |
Buffer! |
P4 f >
[0,0,0,0] [1,0,0,0] B»?;O,O]th_ '
Deliver! eliver this!

. Deliver buffered <P1, seq:2>
FIFO Orderlng: Example Update [2,0,0,0]

[1909090] [290,0,0] 2 0,1,0

I« hver'
L I Pl [2,0,0,0] ime
P2 \ ehver' 2.0.1 0]
[0.0,0,0] ”[T,O, O] ehver'
Deliver!
ko 7seq: 1
000 [0,0.0,0] 901p
Bufter!
P4
10,0,0,0] 11,0,0,0] [1 0,0,0]
o Dl Deliver this!

Deliver buffered <P1, seq:2>
FIFO Ordering: Example Update [2,0,0,0]

[1,0,0,0] [2,0,0,0] [2.0,1,0]

Pl | eliver!
[0,0,0,0] Iseg: 1 P1 [2»0;0»0'] Time
CIIVGI‘. [27091;0]

[0,0,0,0] [1,0,0,0] cliver!

Delivex! [190.,190]
[0909090] [0,0,0,0] [2,0,1,0] 1
Buffer! [290.9 90]
P4 5’ Deliver!
[1,0,0,0] [1,0,0,0]
0-0.0.0] Deliver this!

Deliver!
Deliver buffered <P1, seq:2>

FIFO Ordering: Example Update [2,0,0,0]

TOTAL ORDERING

 Ensures all receivers receive all
multicasts in the same order

e Formally
— If a correct process P delivers
message m before
m’ (independent of the
senders), then any other correct
process P’ that delivers m’
would already have delivered m.

SEQUENCER-BASED APPROACH

Special process elected as leader or sequencer

Send multicast at process Pi:
— Send multicast message M to group and sequencer

Sequencer:
— Maintains a global sequence number S (initially 0)

— When it receives a multicast message M, it sets S=S + 1, and
multicasts <M, S>

Receive multicast at process Pi:
— Pimaintains a local received global sequence number Si (initially 0)

— If Pireceives a multicast M from Py, it buffers it until it both
1. Pireceives <M, S(M)> from sequencer, and
2. Si+1=SM)
* Then deliver it message to application and set Si = Si + 1

CAUsSAL ORDERING

* Multicasts whose send events are
causally related, must be received 1n
the same causality-obeying order at
all receivers

* Formally

— If multicast(g,m) = multicast(g,m’)
then any correct process that
delivers m’ would already have
delivered m.

— (=2 is Lamport’s happens-before)

CAuUSAL MULTICAST: DATASTRUCTURES

e Each receiver maintains a vector of
per-sender sequence numbers
(integers)

— Similar to FIFO Multicast,
but updating rules are different
— Processes P/ through PN

— Pi maintains a vector Pi[1...N] (initially
all zeroes)

— Pi[j] 1s the latest sequence number Pi
has received from Pj

CAausAL MuLTicAST: UPDATING RULES

« Send multicast at process Py:
— Set Pj[j]1=Pj[j] + 1
— Include new entire vector Pj[1...N] in multicast message as its sequence number

» Receive multicast: If Pi receives a multicast from P;j with vector
M[1...N] (= Pj[1...N]) in message, buffer it until both:

1. This message 1s the next one Pi is expecting from Pj, i.e.,
M[j]=Pi[j] + 1
2. All multicasts, anywhere in the group, which happened-before M have been
received at Pi, i.e.,
For all k£ #j: M[k] < Pi[k]
1.e., Receiver satisfies causality
3. When above two conditions satisfied, deliver M to application and set Pi[j] = M]/]

11,0,0,0]

Pl
[0709070] [0,0] Time

P2
[0,0,0,0]

P3
[0,0,0,0] \ %

P4
10,0,0,0]

Causal Ordering: Example

[1.0,0.0]

Pl
10,0,0,0] _
P2 A\ [1.1.0.0]
[0.0.0.01 1,000

Deliver!
P3
0,00,0] \ %
P4
[0,0,0,0] [1,0,0,0]

Deliver!

Causal Ordering: Example

Time

[0,0,0,0] issing 1 from P
Bufter

P4

[0,0,0,0] [1,0,0,0]
Deliver!
Causal Ordering: Example

[1,1,0,0] Deliver!

. [1,0,0,0] Deliver! Receiver satisfies causality
[0,0,0,0] Deliver! lime
[1.1.0.0] Receiver satisfies caus}ality

P2 —
[0,0,0,0] 11,0,0,
Deliver!

[0,0,0,0] issing 1 from P

Buffer
P4 S
[0,0,0,0] [1,0,0,0] [1,0,0,1]

Deliver!
Causal Ordering: Example

[1,1,0,0] Deliver!

. [1,0,0,0] Deliver! Receiver satisfies causality
[0,0,0,0] Deliver! lime
[1.1.0.0] Receiver satisfies caus}ality

issing 1 froyh PY'MEgSing 1 from P1
Buffer T
>
[0,0,0,0] [1,0,0,0] [1,0,0,1]
O Deliver!

Causal Ordering: Example

[1,1,0,0] Deliver!

o [1,0,0,0] Deliver! Receiver satisfies causality
[0909090] Deliver! Time
- 11.1.0.0] Receiver satisfies causality
LK) >

10,0,0,0] " 11,0,0,8]

Deliver!
[0,0,0,0] 1ssing 1 froyh PY'Vhsging 1 from P

Bufter! ffer! "

P4 1.0.0.0 11,0,0,1] Deliver P1’s riiulticast "
[0909090] [L] , ,R,eceiver satisfies causality for buffered multicasts

Deliver!

: Deliver P2’s buff: Iticast
Causal Ordering: Example eliver P2’s buffered multicas

Deliver P4’s buffered multicast

[1,1,0,0] Deliver!

o [1,0,0,0] Deliver! Receiver satisfies causality
[0909090] Deliver! Time
- 11.1.0.0] Receiver satisfies causality
S\t >

10,0,0,0] " 11,0,0,8]

Deliver! Deliver!
[0,0,0,0] 1ssing 1 froph PY'Vhsging 1 from P

Buffer! fert’ /

P4 1.0.0.0 11,0,0,1] Deliver 1’1’3 riiulticast "
[0909090] [L] , ,R,eceiver satisfies causality for buffered multicasts

Deliver!

Causal Ordering: Example Deliver P2’s buffered multicast

Deliver P4’s buffered multicast

SUMMARY: MULTICAST ORDERING

Ordering of multicasts affects correctness
of distributed systems using multicasts

T

ree popular ways of implementing

ordering
— FIFO, Causal, Total

And their implementations

What about reliability of multicasts?
What about failures?

RELIABLE MULTICAST

» Reliable multicast loosely says that
every process 1n the group receives
all multicasts

— Reliability 1s orthogonal to ordering

— Can implement Reliable-FIFO, or
Reliable-Causal, or Reliable-Total, or
Reliable-Hybrid protocols

« What about process failures?
* Definition becomes vague

RELIABLE MULTICAST (UNDER FAILURES)

* Need all correct (1.€., non-

faulty) processes to receive the
same set of multicasts as all

other correct processes

— Faulty processes stop anyway,
so we won’t worry about them

IMPLEMENTING RELIABLE MULTICAST

 Let’s assume we have reliable unicast
(e.g., TCP) available to us

» First-cut: Sender process (of each multicast
M) sequentially sends a reliable unicast
message to all group recipients

» First-cut protocol does not satisfy reliability

— If sender fails, some correct processes
might receive multicast M, while other
correct processes might not receive M

REALLY IMPLEMENTING RELIABLE MULTICAST

» Trick: Have receivers help the sender

1. Sender process (of each multicast M)
sequentially sends a reliable unicast
message to all group recipients

2. When a receiver receives multicast
M, it also sequentially sends M to all

the group’s processes

ANALYSIS

* Not the most efficient multicast protocol,
but reliable

* Proofis by contradiction

e Assume two correct processes Pi and Pj are so
that Pi received a multicast M and P; did not
receive that multicast M

— Then Pi would have sequentially sent the
multicast M to all group members, including Pj,
and Pj would have received M

— A contradiction
— Hence our initial assumption must be false
— Hence protocol preserves reliability

VIRTUAL SYNCHRONY OR VIEW SYNCHRONY

« Attempts to preserve multicast ordering
and reliability 1n spite of failures

* Combines a membership protocol with a
multicast protocol

« Systems that implemented it (like Isis)
have been used in NYSE, French Air
Traffic Control System, Swiss Stock
Exchange

Each process maintains a membership list
The membership list is called a View

An update to the membership list 1s called a View Change

— Process join, leave, or failure
Virtual synchrony guarantees that all view changes are delivered in the same
order at all correct processes

— Ifacorrect P1 process receives views, say {P1}, {P1, P2, P3}, {P1, P2}, {P1, P2, P4}
then

— Any other correct process receives the same sequence of view changes (after it joins the

group)
* P2 receives views {P1, P2, P3}, {P1, P2}, {P1, P2, P4}

Views may be delivered at different physical times at processes,
but they are delivered in the same order

VSYNC MULTICASTS

* A multicast M 1s said to be “delivered in a view V at process Pi” 1f

— Pireceives view V, and then sometime before Pi receives the next view it
delivers multicast M

« Virtual synchrony ensures that

1. The set of multicasts delivered in a given view is the same set at all
correct processes that were in that view
» What happens in a View, stays in that View

2. The sender of the multicast message also belongs to that view

3. If a process Pi does not deliver a multicast M in view V while other
processes 1n the view V delivered M 1n V, then Pi will be forcibly removed
from the next view delivered after V at the other processes

Pl

P2

P3

P4

View {P1,P2,P3,P4}

View {P1,P2,P3}
>

Time
View {P1,P2,P3}
>

View {P1,P2,P3,P4\

View{P1,P2,P3}
>

View{P1,P2,P3,P4

Crash
Satisfies virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4}

View {P1,P2,P3}
>

View{P1,

Time
View {P1,P2,P3}
>

View {P1,P2,P3,P4\

1,P2,P3}

View {P1,P2,P3,P4}

Crash
Does not satisfy virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4}

View {P1,P2}
>

Time
View {P1,P2}
>

View {P1,P2,P3,P4\

View {P1,P2,P3,P4}

Crash
Satisfies virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4}

View {P1,P2,P3}
>

View{P1,

Time
View {P1,P2,P3}
>

View {P1,P2,P3,P4\

View {P1,P2,P3}
>

View {P1,P2,P3,P4}

Crash
Does not satisfy virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4}

View {P1,P2,P3}
>

View{P1, delivéred at P2

Time
View {P1,P2,P3}
>

View {P1,P2,P3,P4\

View {P1,P2,P3}
>

View {P1,P2,P3,P4}

Crash
Satisfies virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

View {P1, tew {P1,P2,P3}

Time

View {P1,P2,P3,P4\

View{P1,P2,P3}
>

View {P1,P2,P3,P4}

Crash
Does not satisfy virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

View {P1, tew {P1,P2,P3}

Time

View {P1,P2,P3,P4\

View {P1,P2,P3,P4}

Crash
Does not satisfy virtual synchrony

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1,P2,P3}

View{P1,

Time

View{P1,P2,P3,P4\

View {P1,P2,P3}
>

View {P1,P2,P3,P4}

Satisfies virtual synchrony

WHAT ABOUT MULTICAST ORDERING?

* Again, orthogonal to virtual synchrony

 The set of multicasts delivered in a
view can be ordered either

— FIFO
— Or Causally

— Or Totally
— Or using a hybrid scheme

ABOUT THAT NAME

« C(Called *“virtual synchrony” since in spite
of running on an asynchronous network,
it gives the appearance of a synchronous
network underneath that obeys the same
ordering at all processes

* So can this virtually synchronous system
be used to implement consensus?

* No! VSync groups susceptible to
partitioning
— E.g., due to inaccurate failure detections

Pl

P2

P3

P4

View {P1,P2,P3,P4} View {P1}

>

Time
View{P2, P3}
>

View{P1I,

View{P1,P2,P3,P4} View {P2,P3}

View {P1,P2,P3,P4}

Crash
Partitioning in View synchronous systems

SUMMARY

e Multicast an important building
block for cloud computing systems

* Depending on application need,
can implement

— Ordering
— Reliability
— Virtual synchrony

« HW1 due this Thursday at the
beginning of lecture

« MP1 has been released, Due
9/28

