
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)

Sep 10, 2015
Lecture 4: Failure Detection and

Membership All slides © IG 1

•  You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’t have any failures
in our datacenter!”

•  Do you believe him/her?

•  What would be your first responsibility?
•  Build a failure detector
•  What are some things that could go wrong if you didn’t do

this?

A Challenge

2

… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm

3

•  You have a few options

1. Hire 1000 people, each to monitor one machine in
the datacenter and report to you when it fails.

2. Write a failure detector program (distributed) that
automatically detects failures and reports to your
workstation.

Which is more preferable, and why?

To build a failure detector

4

5

Target Settings

•  Process ‘group’-based systems
– Clouds/Datacenters
– Replicated servers
– Distributed databases

•  Fail-stop (crash) process failures

6

Group Membership Service
Application Queries
 e.g., gossip, overlays,

 DHT’s, etc.

Membership
Protocol

Group
Membership List

 joins, leaves, failures
of members

Unreliable
Communication

Application Process pi

Membership List

7

Two sub-protocols

Dissemination
Failure Detector

Application Process pi
Group

Membership List

Unreliable
Communication

• Complete list all the time (Strongly consistent)
• Virtual synchrony

• Almost-Complete list (Weakly consistent)
• Gossip-style, SWIM, …

• Or Partial-random list (other systems)
• SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

 pj

8

Large Group: Scalability A
Goal

this is us (pi)

Unreliable Communication
Network

1000’s of processes

Process Group
“Members”

9

 pj I pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure Detector II

Dissemination III

Fail-stop Failures only

Next
•  How do you design a group membership

protocol?

10

11

I. pj crashes
•  Nothing we can do about it!
•  A frequent occurrence
•  Common case rather than exception
•  Frequency goes up linearly with size of

datacenter

12

II. Distributed Failure Detectors:
Desirable Properties

•  Completeness = each failure is detected
•  Accuracy = there is no mistaken detection
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

13

Distributed Failure Detectors:
Properties

•  Completeness
•  Accuracy
•  Speed

–  Time to first detection of a failure
•  Scale

–  Equal Load on each member
–  Network Message Load

Impossible together in
lossy networks [Chandra
and Toueg]

If possible, then can
solve consensus! (but
consensus is known to be
unsolvable in
asynchronous systems)

14

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

15

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

Time until some
process detects the failure

16

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

Time until some
process detects the failure

No bottlenecks/single
failure point

17

Failure Detector Properties

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

In spite of
arbitrary simultaneous
process failures

18

Centralized Heartbeating

pi, Heartbeat Seq. l++

pi L Hotspot

pj • Heartbeats sent periodically
• If heartbeat not received from pi within
timeout, mark pi as failed

19

Ring Heartbeating

pi, Heartbeat Seq. l++
L Unpredictable on
simultaneous multiple

 failures
pi

…

pj

20

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

J Equal load per member
L Single hb loss à false

 detection

pi

pj

Next
•  How do we increase the robustness of all-to-all

heartbeating?

21

22

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

J Good accuracy
properties pi

23

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

• Nodes periodically gossip their membership
list: pick random nodes, send it list

• On receipt, it is merged with local membership
list

• When an entry times out, member is marked
as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

24

Gossip-Style Failure Detection
•  If the heartbeat has not increased for more than

Tfail seconds,
the member is considered failed

•  And after a further Tcleanup seconds, it will
delete the member from the list

•  Why an additional timeout? Why not delete
right away?

25

Gossip-Style Failure Detection

•  What if an entry pointing to a failed node is

deleted right after Tfail (=24) seconds?

•  Fix: remember for another Tfail

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

26

Analysis/Discussion
•  What happens if gossip period Tgossip is decreased?
•  Well-known result: a gossip takes O(log(N)) time to propagate.
•  So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to

propagate.
•  So: N heartbeats take:

–  O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)

–  O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)
–  What about O(k) bandwidth?

•  What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased?
•  Tradeoff: False positive rate vs. detection time vs. bandwidth

Next
•  So, is this the best we can do? What is the best

we can do?

27

28

Failure Detector Properties …
•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

29

…Are application-defined
Requirements

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

30

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

N*L: Compare this across protocols

…Are application-defined
Requirements

31

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

pi Every T units

L=N/T

32

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

pi

Every tg units
=gossip period,
send O(N) gossip
message

T=logN * tg
L=N/tg=N*logN/T

•  Worst case load L* per member in the group
(messages per second)
–  as a function of T, PM(T), N
–  Independent Message Loss probability pml

• 

33

What’s the Best/Optimal we can
do?

T
TPM
pml

1.
)log(
))(log(L*=

34

Heartbeating
•  Optimal L is independent of N (!)
•  All-to-all and gossip-based: sub-optimal

•  L=O(N/T)
•  try to achieve simultaneous detection at all processes
•  fail to distinguish Failure Detection and Dissemination

components
 Ü Can we reach this bound?

Ü Key:
 Separate the two components
 Use a non heartbeat-based Failure Detection Component

Next
•  Is there a better failure detector?

35

36

SWIM Failure Detector Protocol

Protocol period
= T’ time units

X
K random
processes

pi

ping

ack

ping-req

ack

• random pj

X

ack

ping

• random K

pj

37

•  Prob. of being pinged in T’=

•  E[T] =

•  Completeness: Any alive member detects failure
–  Eventually
–  By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
−e
e

11 1)11(1 −− −=−− e
N

N

38

Accuracy, Load

•  PM(T) is exponential in -K. Also depends on pml (and
pf)
–  See paper

•  for up to 15 % loss rates 28
*
<

L
L 8

*
][
<

L
LE

39

SWIM Failure Detector
Parameter SWIM

First Detection Time
 •  Expected periods

•  Constant (independent of group size)

Process Load •  Constant per period
•  < 8 L* for 15% loss

False Positive Rate •  Tunable (via K)
•  Falls exponentially as load is scaled

Completeness •  Deterministic time-bounded
•  Within O(log(N)) periods w.h.p.

⎥⎦

⎤
⎢⎣

⎡
−1e
e

40

Time-bounded Completeness
•  Key: select each membership element once as a

ping target in a traversal
– Round-robin pinging
– Random permutation of list after each traversal

•  Each failure is detected in worst case 2N-1
(local) protocol periods

•  Preserves FD properties

41

SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
•  False Positive Rate
•  Message Loss Rate

Heartbeating

Heartbeating

Next
•  How do failure detectors fit into the big picture

of a group membership protocol?
•  What are the missing blocks?

42

43

 pj I pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure Detector II

Dissemination III

Fail-stop Failures only

HOW ? HOW ? HOW ? HOW ?

44

Dissemination Options
•  Multicast (Hardware / IP)
– unreliable
– multiple simultaneous multicasts

•  Point-to-point (TCP / UDP)
– expensive

•  Zero extra messages: Piggyback on Failure
Detector messages
–  Infection-style Dissemination

45

Infection-style Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

• random pj

X

ack

ping

• random K

pj

Piggybacked
membership
information

K random
processes

46

Infection-style Dissemination
•  Epidemic/Gossip style dissemination
–  After protocol periods, processes would not

have heard about an update
•  Maintain a buffer of recently joined/evicted processes
–  Piggyback from this buffer
–  Prefer recent updates

•  Buffer elements are garbage collected after a while
–  After protocol periods, i.e., once they’ve propagated

through the system; this defines weak consistency
)log(. Nλ

)log(. Nλ

€

−(2λ−2)N

47

Suspicion Mechanism
•  False detections, due to
– Perturbed processes
– Packet losses, e.g., from congestion

•  Indirect pinging may not solve the problem
•  Key: suspect a process before declaring it as

failed in the group

48

Suspicion Mechanism
Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn (Suspect pj)

Dissmn (Alive pj) Dissmn (Failed pj)

49

Suspicion Mechanism
•  Distinguish multiple suspicions of a process
–  Per-process incarnation number
–  Inc # for pi can be incremented only by pi

•  e.g., when it receives a (Suspect, pi) message

–  Somewhat similar to DSDV (routing protocol in ad-hoc nets)

•  Higher inc# notifications over-ride lower inc#’s
•  Within an inc#: (Suspect inc #) > (Alive, inc #)
•  (Failed, inc #) overrides everything else

50

Wrap Up
•  Failures the norm, not the exception in datacenters
•  Every distributed system uses a failure detector
•  Many distributed systems use a membership service

•  Ring failure detection underlies
–  IBM SP2 and many other similar clusters/machines

•  Gossip-style failure detection underlies
–  Amazon EC2/S3 (rumored!)

Announcements
•  MP1 – Demo signup sheet available on Piazza
– Demo details up soon

•  Check Piazza often! It’s where all the
announcements are at!

51

