CS 425/ ECE 428
Distributed Systems
Fall 2015

Indranil Gupta (Indy)
Sep 10, 2015

Lecture 4: Failure Detection and
Membership All slides © 1G

A CHALLENGE

You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’ t have any failures
in our datacenter!”

Do you believe him/her?

What would be your first responsibility?
Build a failure detector

What are some things that could go wrong if you didn’ t do
this?

FAILURES ARE THE NORM

... not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) 1s once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine 1s 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

TO BUILD A FAILURE DETECTOR

* You have a few options

1. Hire 1000 people, each to monitor one machine in
the datacenter and report to you when 1t fails.

2. Write a failure detector program (distributed) that
automatically detects failures and reports to your
workstation.

TARGET SETTINGS

 Process ‘group -based systems
— Clouds/Datacenters
— Replicated servers
— Distributed databases

 Fail-stop (crash) process failures

GROUP MEMBERSHIP SERVICE
| Apﬁlication 'Qu!eries
A e, gossip, overlays,
s 1" DHTs, etc.

Application Process pi

Membership List

Membership
Protocol

Unreliable
Communication

TWO SUB-PROTOCOLS

'|
*Complete list all the time (Strongly consistent) M
rVirtual synchrony Failure Detector ’

*Almost-Complete list (Weakly consistent)
*Gossip-style, SW

*SCAMP, T-MAN, Cyclon,... Unreliable

Focus of this series of lecture Communication 7

LARGE GROUP: OCALABILITY A

this is us (pi)

Unreliable Communicatign
etwor

GrourP MEMBERSHIP PROTOCOL
ome pI‘OCGSS

BB findsout quickly

% ’i ’_\ij\fms N
-\

11 :—(—
Unreliable Communicatign
etwor

Fail-stop Failures only 9

NEXT

* How do you design a group membership
protocol?

10

I. pj crashes

Nothing we can do about 1t!

A frequent occurrence

Common case rat

ner than exception

Frequency goes u;
datacenter

0 linearly with size of

11

Il. DISTRIBUTED FAILURE DETECTORS:
DESIRABLE PROPERTIES

* Completeness = each failure is detected
= there 1s no mistaken detection
* Speed
— Time to first detection of a failure

* Scale
— Equal Load on each member

— Network Message Load

12

DISTRIBUTED FAILURE DETECTORS:

PROPERTIES
.--¢"Completeness ~™~-- — "
~-.s _Accuracy .-
* Speed

— Time to first detection of a failu

 Scale

— Equal Load on each member
— Network Message Load

WHAT REAL FAILURE DETECTORS
PREFER

—”
-

TR | Partial/Probabilistic

guarantee

-~
~~—-—

-_———
-
-

* Speed

— Time to first detection of a failure
* Scale

— Equal Load on each member

— Network Message [Load

14

WHAT REAL FAILURE DETECTORS

PREFER
> _Completeness___>> ——" Guaranteed |
U ES —— | Partial/Probabilistic
- Accuracy__.------
guarantee
* Speed

— Time to first detection of a failure

— Equal Load on each member

— Network Message [Load

15

WHAT REAL FAILURE DETECTORS

PREFER
> _Completeness___>> ——" Guaranteed |
U ES —— | Partial/Probabilistic
- Accuracy...------
guarantee
* Speed

— Time to first detection of a failure

* Scale
— Equal Load on eac

— Network Message [Load

No bottlenecks/single
failure point

FAILURE DETECTOR PROPERTIES

Completeness
Accuracy
Speed

— Time to first detection of a failure

Scale
— Equal Load on each member

— Network Message Load

CENTRALIZED HEARTBEATING

e C e 5>

o

O o

O

pi, Heartbeat Seq. [++

. —N\
PJ \Q’ *Heartbeats sent periodically
oIf heartbeat not received from pi within
. . . 8
timeout, mark pi as failed

RING HEARTBEATING
@ Unpredictable on

simultaneous multiple

pi, Heartbeat Seq. [++

y failures
\—/

5/ \ 2

19

ALL-TO-ALL HEART

pi, Heartbeat Seq. [++

© Equal load per member

20

NEXT

* How do we increase the robustness of all-to-all
heartbeating?

21

GOsSSIP-STYLE HEARTBEATING

© Good accuracy
Array of 1121 O properties

Heartbeat Seq. /
for member subset

22

GossSIP-STYLE FAILURE DETECTION

1 10120 66
2 10103 62
3 10098 63
4 10111 65

e /' T
Address Time (local)

Heartbeat Counter
Protocol:

*Nodes periodically gossip their membership
list: pick random nodes, send it list

*On receipt, it is merged with local membership
list

*When an entry times out, member is marked
as failed

1 10118 64
2 10110 64
3 10090 58
4 10111 65
1 10120 70
2 10110 64
3 10098 70
4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

23

GossSIP-STYLE FAILURE DETECTION

e If the heartbeat has not increased for more than
T,,; seconds,
the member 1s considered failed

* And after a further T,,,,,, seconds, it will
delete the member from the list

* Why an additional timeout? Why not delete
right away?

24

GoOsSIP-STYLE FAILURE DETECTION.)

 What if an entry pointing to a failed node 1s
deleted right after T, (=24) seconds?

10120

66

10103

62

10098

55

1
2
3
4

10111

65

10120

66

64

1

,/ 2 | 10110
a [10008
4

66

10111

65

Current time : 75 at node 2

25

ANALYSIS/DISCUSSION

What happens if gossip period T is decreased?

gossip
Well-known result: a gossip takes O(log(N)) time to propagate.

So: Given sufficient bandwidth, a single heartbeat takes O(log(N)) time to
propagate.

So: N heartbeats take:

— O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be
O(N)

— O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)

— What about O(k) bandwidth?

What happens to P

Tradeoff: False positive rate vs. detection time vs. bandwidth

(false positive rate) as Ty, , T 1s increased?

mistake cleanup

NEXT

* So, 1s this the best we can do? What 1s the best
we can do?

27

FAILURE DETECTOR PROPERTIES ...

* Completeness
* Accuracy
* Speed
— Time to first detection of a failure

* Scale
— Equal Load on each member

— Network Message Load

28

..ARE APPLICATION-DEFINED

~ REQUIREMENTS
<% Completeness = :—

P S b D /
<~» _Accuracy ___...--- I

-

— Time to first detection of a failure

* Scale
— Equal Load on each member

— Network Message Load

29

..ARE APPLICATION-DEFINED

~ REQUIREMENTS
<% Completeness = :—

S, /
<e_Accuracy ___._..= _—

-

— Time to first detectron—otoatfarbaea
N*L: Compare this across protocols

“.=Equal Load on each member__.--

— —

- e

— e o — ——
el e

— Network Message Load

30

ALL-TO-ALL HEARTBEATING

pi, Heartbeat Seq. [++

L=N/T

31

GOsSIP-STYLE HEARTBEATING

 ® T-logN *tg.
Array of Pt

Heartbeat Seq. / L=N/tg=N*logN/T

for member subset

32

WHAT'S THE BEST/OPTIMAL WE CAN
DO?

* Worst case load L* per member 1n the group
(messages per second)

— as a function of T, PM(T), N
— Independent Message Loss probability p, ,

_log(PM(T)) 1
log(pml) T

° 1*

HEARTBEATING
* Optimal L 1s independent of N (!)
* All-to-all and gossip-based: sub-optimal
. L=O(N/T)
* try to achieve simultaneous detection at all processes

* fail to distinguish Failure Detection and Dissemination
components

=Can we reach this bound?
>Key:
B Separate the two components
BUse a non heartbeat-based Failure Detection Component

34

NEXT

* Is there a better failure detector?

35

SWIM FAILURE DETECTOR PROTOCOL

— - ———
’— ~~

pi P ¢~ D
A : ' \ g _ 7/
I orandom pj ________________
ping T = K random
! X— -—~
*random K
: ping-req i T e »X
A *
Protocol period hmmm =77 ping
» . .
=T time units I e N

—
__
__
_ - ack
I e
__
—
-

—
__

|
v

36

DETECTION TIME

|V _
* Prob. of being pinged in T’= 1-(1- N)N '=]-¢"

. E[T]= T -%_
e—1
* Completeness: Any alive member detects failure

— Eventually
— By using a trick: within worst case O(N) protocol periods

37

ACCURACcY, LoAaD

* PM(T) 1s exponential in -K. Also depends on pm!/ (and
pf)

— See paper
L E[L]
— < 28 8
. L*< L* for up to 15 % loss rates

38

SWIM FAILURE DETECTOR

Parameter

SWIM

First Detection Time

e

* Expected periods

e—1

* Constant (independent of group size)

Process Load

* Constant per period
* <8 L* for 15% loss

False Positive Rate

* Tunable (via K)
* Falls exponentially as load is scaled

Completeness

* Deterministic time-bounded
* Within O(log(N)) periods w.h.p.

39

TIME-BOUNDED COMPLETENESS

* Key: select each membership element once as a
ping target in a traversal

— Round-robin pinging
— Random permutation of list after each traversal

e Each failure 1s detected in worst case 2N-1
(local) protocol periods

* Preserves FD properties "

SWIM vERSUS HEARTBEATING

A

o)

First Detection
Time

e

SWIM

Heartbeating

Heartbeating

For Fixed :
» False Positive Rate

* Message Loss Rate

Process Load

o

m >

41

NEXT

* How do failure detectors fit into the big picture
of a group membership protocol?

* What are the missing blocks?

42

GrouP MEMBERSHIP PROTOCOL

II Failure Detector
ome process

ut ylckly

| @ Dissemination

T K
eliable Communication
etwor
Fail-stOp Faildres

43

DISSEMINATION OPTIONS
* Multicast (Hardware / IP)

— unreliable
— multiple simultaneous multicasts

* Point-to-point (TCP / UDP)
— expensive

* Zero extra messages: Piggyback on Failure
Detector messages

— Infection-style Dissemination

44

E I B B e—"
——_ -~~

pi P ¢~ D
A : ' \ g _ 7/
| *random PJ|==_ _ i R P
| ping o - K random
I -
! X— -—~ |ack Processes
|
| *random K |____<*»
: ping-req I R M »X
A *
Protocol period hm === T ping
=Ttmeumts | o T~ ==—=--- N

) ack PlgngaCked
------ membership

information
45

|
v

INFECTION-STYLE DISSEMINATION

* Epidemic/Gossip style dissemination

— After A.log(N) protocol periods, N
have heard about an update

* Maintain a buffer of recently joined/evicted processes
— Piggyback from this buffer

processes would not

— Prefer recent updates

* Buffer elements are garbage collected after a while

— After A.log(N) protocol periods, 1.€., once they’ve propagated
through the system; this defines weak consistency

46

SUSPICION MECHANISM

* False detections, due to
— Perturbed processes

— Packet losses, €.g., from congestion
* Indirect pinging may not solve the problem

* Key: suspect a process before declaring 1t as
failed 1n the group

47

SUSPICION MECHANISM [;

Dissmn‘ (Suspect pj)
e
. &‘Z&\\e »&‘Qﬂ
S 0 &

-;.? @ 6%’% ¢
QO Q- \3@0 \ OZ[[
9\% i %% 6493

QQ.';Q(&‘." @

Dissmn \(Alive 12J) Dissmn | (Failed pj)

SUSPICION MECHANISM

Distinguish multiple suspicions of a process
— Per-process incarnation number

— Inc # for pi can be incremented only by pi

* e.g., when it receives a (Suspect, pi) message

— Somewhat similar to DSDV (routing protocol in ad-hoc nets)
Higher inc# notifications over-ride lower inc# s
Within an inc#: (Suspect inc #) > (Alive, 1nc #)

(Failed, inc #) overrides everything else N

WRrAP UpP

Failures the norm, not the exception in datacenters
Every distributed system uses a failure detector
Many distributed systems use a membership service

Ring failure detection underlies
— IBM SP2 and many other similar clusters/machines

Gossip-style failure detection underlies
— Amazon EC2/S3 (rumored!)

50

Announcements

* MPI1 — Demo signup sheet available on Piazza

— Demo details up soon

 Check Piazza often! It’s where all the
announcements are at!

