
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)

Sep 8, 2015
Lecture 5: Mapreduce and Hadoop

All slides © IG 1

What is MapReduce?
•  Terms are borrowed from Functional Language (e.g., Lisp)
Sum of squares:

•  (map square ‘(1 2 3 4))
–  Output: (1 4 9 16)
[processes each record sequentially and independently]

•  (reduce + ‘(1 4 9 16))
–  (+ 16 (+ 9 (+ 4 1)))
–  Output: 30
[processes set of all records in batches]

•  Let’s consider a sample application: Wordcount
–  You are given a huge dataset (e.g., Wikipedia dump or all of Shakespeare’s works) and asked to list the count for each

of the words in each of the documents therein 2

Map

•  Process individual records to generate
intermediate key/value pairs.

	

Welcome	
 Everyone	

Hello	
 Everyone	

Welcome 	
 1	

Everyone 	
 1	
 	

Hello 	
 1	

Everyone 	
 1	
 	

Input <filename, file text>

Key Value

3

Map

•  Parallelly Process individual records to
generate intermediate key/value pairs.

	

Welcome	
 Everyone	

Hello	
 Everyone	

Welcome 	
 1	

Everyone 	
 1	
 	

Hello 	
 1	

Everyone 	
 1	
 	
 Input <filename, file text>

MAP TASK 1

MAP TASK 2
4

Map

•  Parallelly Process a large number of
individual records to generate intermediate
key/value pairs.

	

Welcome	
 Everyone	

Hello	
 Everyone	

Why	
 are	
 you	
 here	
 	

I	
 am	
 also	
 here	

They	
 are	
 also	
 here	

Yes,	
 it’s	
 THEM!	
 	

The	
 same	
 people	
 we	
 were	
 thinking	
 of	

…….	

	

Welcome	
 1	

Everyone 	
 1	
 	

Hello 	
 1	

Everyone 	
 1	

Why	
 	
 1	

Are 	
 	
 1	

You 	
 1	

Here 	
 1	

…….	

	
 	

Input <filename, file text>

MAP TASKS
5

Reduce
•  Reduce processes and merges all intermediate

values associated per key

Welcome 	
 1	

Everyone 	
 1	
 	

Hello 	
 1	

Everyone 	
 1	
 	

Everyone 	
 2	
 	

Hello 	
 1	

Welcome 	
 1	

Key Value

6

Reduce

•  Each key assigned to one Reduce
•  Parallelly Processes and merges all intermediate values by partitioning

keys

•  Popular: Hash partitioning, i.e., key is assigned to
–  reduce # = hash(key)%number of reduce tasks

Welcome 	
 1	

Everyone 	
 1	
 	

Hello 	
 1	

Everyone 	
 1	
 	

Everyone 	
 2	
 	

Hello 	
 1	

Welcome 	
 1	

REDUCE
TASK 1

REDUCE
TASK 2

7

Hadoop Code - Map
public static class MapClass extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one =

 new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

 // key is empty, value is the line

 throws IOException {

 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 output.collect(word, one);

 }

 }

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount

8

Hadoop Code - Reduce
public static class ReduceClass extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(

 Text key,

 Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter)

 throws IOException {

 // key is word, values is a list of 1’s

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount

9

Hadoop Code - Driver
// Tells Hadoop how to run your Map-Reduce job

public void run (String inputPath, String outputPath)

 throws Exception {

 // The job. WordCount contains MapClass and Reduce.

 JobConf conf = new JobConf(WordCount.class);

 conf.setJobName(”mywordcount");

 // The keys are words

 (strings) conf.setOutputKeyClass(Text.class);

 // The values are counts (ints)

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);

 conf.setReducerClass(ReduceClass.class);

 FileInputFormat.addInputPath(

 conf, newPath(inputPath));

 FileOutputFormat.setOutputPath(

 conf, new Path(outputPath));

 JobClient.runJob(conf);

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount

10

Some Applications of
MapReduce

Distributed Grep:
–  Input: large set of files
–  Output: lines that match pattern

–  Map – Emits a line if it matches the supplied pattern
–  Reduce – Copies the intermediate data to output

11

Some Applications of
MapReduce (2)

Reverse Web-Link Graph
–  Input: Web graph: tuples (a, b) where (page a à page b)
–  Output: For each page, list of pages that link to it

–  Map – process web log and for each input <source, target>, it outputs
<target, source>

–  Reduce - emits <target, list(source)>

12

Some Applications of
MapReduce (3)

Count of URL access frequency
–  Input: Log of accessed URLs, e.g., from proxy server
–  Output: For each URL, % of total accesses for that URL

–  Map – Process web log and outputs <URL, 1>
–  Multiple Reducers - Emits <URL, URL_count>
(So far, like Wordcount. But still need %)
–  Chain another MapReduce job after above one
–  Map – Processes <URL, URL_count> and outputs <1, (<URL, URL_count>)>
–  1 Reducer – Does two passes. In first pass, sums up all URL_count’s to calculate

overall_count. In second pass calculates %’s
 Emits multiple <URL, URL_count/overall_count>

13

Some Applications of
MapReduce (4)

Map task’s output is sorted (e.g., quicksort)
Reduce task’s input is sorted (e.g., mergesort)

Sort

–  Input: Series of (key, value) pairs
–  Output: Sorted <value>s

–  Map – <key, value> à <value, _> (identity)
–  Reducer – <key, value> à <key, value> (identity)
–  Partitioning function – partition keys across reducers based on ranges (can’t use

hashing!)
•  Take data distribution into account to balance reducer tasks

14

Programming MapReduce
Externally: For user

1.  Write a Map program (short), write a Reduce program (short)
2.  Specify number of Maps and Reduces (parallelism level)
3.  Submit job; wait for result
4.  Need to know very little about parallel/distributed programming!

Internally: For the Paradigm and Scheduler
1.  Parallelize Map
2.  Transfer data from Map to Reduce (shuffle data)
3.  Parallelize Reduce
4.  Implement Storage for Map input, Map output, Reduce input, and Reduce output
(Ensure that no Reduce starts before all Maps are finished. That is, ensure the barrier between the Map
phase and Reduce phase) 15

Inside MapReduce
For the cloud:

1.  Parallelize Map: easy! each map task is independent of the other!
•  All Map output records with same key assigned to same Reduce

2.  Transfer data from Map to Reduce:
•  Called Shuffle data
•  All Map output records with same key assigned to same Reduce task
•  use partitioning function, e.g., hash(key)%number of reducers

3.  Parallelize Reduce: easy! each reduce task is independent of the other!
4.  Implement Storage for Map input, Map output, Reduce input, and Reduce

output
•  Map input: from distributed file system
•  Map output: to local disk (at Map node); uses local file system
•  Reduce input: from (multiple) remote disks; uses local file systems
•  Reduce output: to distributed file system
local file system = Linux FS, etc.
distributed file system = GFS (Google File System), HDFS (Hadoop

Distributed File System) 16

1
2
3
4
5
6
7
 Blocks

from DFS
Servers

Resource Manager (assigns maps and reduces to servers)

Map tasks

I

II

III

Output files
into DFS

A

B

C

Servers

A

B

C

(Local write, remote read)

Reduce tasks

17

The YARN Scheduler
•  Used underneath Hadoop 2.x +
•  YARN = Yet Another Resource Negotiator
•  Treats each server as a collection of containers

–  Container = fixed CPU + fixed memory (think of Linux cgroups, but even more lightweight)
•  Has 3 main components

–  Global Resource Manager (RM)
•  Scheduling

–  Per-server Node Manager (NM)
•  Daemon and server-specific functions

–  Per-application (job) Application Master (AM)
•  Container negotiation with RM and NMs
•  Detecting task failures of that job

18

YARN: How a job gets a
container

Resource	
 Manager	

Capacity	
 Scheduler	

Node	
 A	

Node	
 Manager	
 A	

Applica8on	

Master	
 1	

Node	
 B	

Node	
 Manager	
 B	

Applica8on	

Master	
 2	

Task	
 (App2)	

2. Container Completed 1. Need
container 3. Container on Node B

4. Start task, please!

In this figure
•  2 servers (A, B)
•  2 jobs (1, 2)

19

Fault Tolerance
•  Server Failure

–  NM heartbeats to RM
•  If server fails: RM times out waiting for next heartbeat, RM

lets all affected AMs know, and AMs take appropriate action
–  NM keeps track of each task running at its server

•  If task fails while in-progress, mark the task as idle and restart it

–  AM heartbeats to RM
•  On failure, RM restarts AM, which then syncs it up with its

running tasks

•  RM Failure
–  Use old checkpoints and bring up secondary RM

•  Heartbeats also used to piggyback container requests
–  Avoids extra messages

20

Slow Servers
Slow tasks are called Stragglers

•  The slowest task slows the entire job down (why?)
•  Due to Bad Disk, Network Bandwidth, CPU, or Memory
•  Keep track of “progress” of each task (% done)
•  Perform proactive backup (replicated) execution of some straggler

tasks
–  A task considered done when its first replica complete (other replicas can

then be killed)
–  Approach called Speculative Execution.

21

Barrier at the end
of Map phase!

Locality
•  Locality

–  Since cloud has hierarchical topology (e.g., racks)
–  For server-fault-tolerance, GFS/HDFS stores 3 replicas of each of chunks

(e.g., 64 MB in size)
•  For rack-fault-tolerance, on different racks, e.g., 2 on a rack, 1 on a different rack

–  Mapreduce attempts to schedule a map task on
1.  a machine that contains a replica of corresponding input data, or

failing that,
2.  on the same rack as a machine containing the input, or failing that,
3.  Anywhere

22

Mapreduce: Summary
•  Mapreduce uses parallelization + aggregation to

schedule applications across clusters

•  Need to deal with failure

•  Plenty of ongoing research work in scheduling and
fault-tolerance for Mapreduce and Hadoop

23

Announcements
•  HW1 due Sep 17th
•  MP1 due Sep 13th (this coming Sunday!)

–  VMs already distributed
–  Demos will be Monday (schedule and details will be posted

soon on Piazza)
•  Waitlist should be empty now
•  Please fill out Student Survey by today (course

webpage).
24

