
CS 425 / ECE 428
Distributed Systems

Fall 2015

Indranil Gupta
Sensor Networks

Lecture 24 A
Nov 12, 2015

Reading: Links on website

All Slides © IG
1

Some questions…

•  What is the smallest transistor out there
today?

2

Some questions…

•  What is the smallest transistor out there
today?

•  A single Gold (Au) atom!
•  Pentium P4 contains 42 M transistors
•  Au atomic weight is 196 ~ 200.
•  1 g of Au contains 3 X 10^21 atoms =>

7.5 X 10^18 Pentium P4 processors from
a gram of Au => 1 billion P4’s per
person! 3

Some questions…

•  How would you “monitor”:
a)  a large battlefield (for enemy tanks)?
b)  a large environmental area (e.g.,

movement of whales)?
c)  your own backyard (for intruders)?

4

Sensors!
•  Coal mines have always had CO/CO2 sensors

–  “Canary in a coal mine.”
•  Industry has used sensors for a long time, e.g.,

along assembly lines
Today…
•  Excessive Information

–  Army needs to know about enemy troop deployments
–  Environmentalists collecting data on an island
–  Humans in society face information overload

•  Sensor Networking technology can help filter and
process this information (And then perhaps
respond automatically?) 5

Harvard’s deployment –
Tungurahua volcano, Ecuador

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

6 Source: http://fiji.eecs.harvard.edu/Volcano

Growth of a technology requires
I.  Hardware
II.  Operating Systems and Protocols
III.  Killer applications

–  Military and Civilian

7

Sensor Nodes
•  Motivating factors for emergence: applications,

Moore’s Law, wireless comm., MEMS (“micro
electro mechanical systems”)

•  Canonical Sensor Node contains
1.  Sensor(s) to convert a different energy form to an

electrical impulse e.g., to measure temperature
2.  Microprocessor
3.  Communications link, e.g., wireless
4.  Power source, e.g., battery

8

Laser diode
III-V process

Passive CCR comm.
MEMS/polysilicon

Sensor
MEMS/bulk, surface, ...

Analog I/O, DSP, Control
COTS CMOS

Solar cell
CMOS or III-V

Thick film battery
Sol/gel V2O5

Power capacitor
Multi-layer ceramic

1-2 mm

Example: Berkeley “Motes” or “Smart
Dust”

Can you identify the 4
components here? 9

Example Hardware

•  Size
– Golem Dust: 11.7 cu. mm
– MICA motes: Few inches

•  Everything on one chip: micro-everything
–  processor, transceiver, battery, sensors, memory, bus
– MICA: 4 MHz, 40 Kbps, 4 KB SRAM / 512 KB Serial

Flash, lasts 7 days at full blast on 2 x AA batteries

10

Examples

Spec, 2003
• 4 KB RAM
•  4 MHz clock
•  19.2 Kbps, 40 feet
•  Supposedly $0.30

MICA: Crossbow
Similar Intel motes 11

Types of Sensors

•  Micro-sensors (MEMS, Materials, Circuits)
–  acceleration, vibration, gyroscope, tilt, magnetic, heat,

motion, pressure, temp, light, moisture, humidity,
barometric, sound

•  Chemical
–  CO, CO2, radon

•  Biological
–  pathogen detectors

•  [Actuators too (mirrors, motors, smart surfaces,
micro-robots)]

12

I2C bus – simple technology

•  Inter-IC connect
–  e.g., connect sensor to microprocessor

•  Simple features
–  Has only 2 wires
–  Bi-directional
–  serial data (SDA) and serial clock (SCL) bus

•  Up to 3.4 Mbps
•  Developed By Philips

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

13

Transmission Medium

•  Spec, MICA: Radio Frequency (RF)
–  Broadcast medium, routing is “store and forward”, links are

bidirectional

•  Smart Dust : smaller size => RF needs high frequency =>
higher power consumption => RF not good

 Instead, use Optical transmission: simpler hardware, lower
power (think “laser”)
–  Directional antennas only, broadcast costly
–  Line of sight, or use intermediate node(s) to reflect (think “mirrors”)
–  Passive transmission (reflectors) => wormhole routing
–  However, switching links costly : mechanical antenna movements
–  Unidirectional links

14

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Berkeley Family of Motes

15

Hardware Summary: Sensor
Node

•  Small Size : few mm to a few inches
•  Limited processing and communication

–  MhZ clock, MB flash, KB RAM, at most 100’s Kbps
(wireless) bandwidth

•  Limited power (MICA: 7-10 days at full blast)
•  Failure prone nodes and links (due to deployment,

fab, wireless medium, etc.)

•  But easy to manufacture and deploy in large
numbers

•  Need to offset this with scalable and fault-tolerant
OS’s and protocols 16

Sensor-node Operating System
Issues

–  Size of code and run-time memory footprint
•  Embedded System OS’s inapplicable: need

hundreds of KB ROM
–  Workload characteristics

•  Continuous ? Bursty ?
–  Application diversity

•  Reuse sensor nodes
–  Tasks and processes

•  Scheduling
•  Meet real-time deadlines?

–  Power consumption
–  Communication 17

TinyOS design point

–  Bursty dataflow-driven computations
–  Multiple data streams => concurrency-intensive
–  Real-time computations
–  Power conservation
–  Size
–  Accommodate diverse set of applications (reuse mote)

� TinyOS:
– Event-driven execution (reactive mote)
– Modular structure (components) and clean interfaces

18

Programming TinyOS
•  Use a variant of C called NesC (Nested C)
•  NesC defines components
•  A component is either

–  A module specifying a set of methods and internal storage
(~like a Java static class)

 A module corresponds to either a hardware element on the
chip (i.e., device driver for, e.g., the clock or the LED), or
to a user-defined software module (e.g., routing)

 Modules implement and use interfaces
–  Or a configuration , a set of other components wired

(virtually) together by specifying the unimplemented
method invocations

•  A complete NesC application then consists of
one top level configuration 19

Steps in writing and installing
your NesC app

(applies to MICA Mote)
•  On your PC

–  Write NesC program
–  Compile to an executable for the mote
–  Debug on your PC (using TOSSIM)
–  Plug the mote into the PC through a connector board
–  Install the program

•  On the mote
–  Turn the mote on, and it’s already running your

application

20

TinyOS component model

•  Component specifies:

•  Component invocation is event driven, arising from
hardware events

•  Static allocation of objects avoids run-time overhead
•  Scheduling: dynamic, real-time
•  Explicit interfaces accommodate different

applications

Internal State Internal Tasks

Commands Events

21

A Complete TinyOS Application

RFM

Radio byte

Radio Packet

i2c

Temp photo

Messaging Layer

clocks bit

byte

packet

Routing Layer

sensing application application

HW

SW

ADC

messaging

routing

22

TinyOS Facts

•  Software Footprint 3.4 KB
•  Power Consumption on Rene Platform

Transmission Cost: 1 µJ/bit
Inactive State: 5 µA
Peak Load: 20 mA

•  Concurrency support: at peak load CPU is
asleep 50% of time

•  Events propagate through stack <40 µS

23

Energy – a critical resource

•  Power saving modes:
– MICA: active, idle, sleep

•  Tremendous variation in energy supply and
demand

– Sources: batteries, solar, vibration, AC
– Requirements: long term deployment vs. short

term deployment, bursty bandwidth use
– 1 year on 2xAA batteries => 200 uA average

current

24

Energy – a critical resource
Component Rate Startup time Current consumption

CPU Active 4 MHz N/A 4.6 mA
CPU Idle 4 MHz 1 us 2.4 mA
CPU Suspend 32 kHz 4 ms 10 uA
Radio Transmit 40 kHz 30 ms 12 mA
Radio Receive 40 kHz 30 ms 3.6 mA
Photo 2000 Hz 10 ms 1.235 mA
I2C Temp 2 Hz 500 ms 0.150 mA
Pressure 10 Hz 500 ms 0.010 mA
Press Temp 10 Hz 500 ms 0.010 mA
Humidity 500 Hz 500 ms 0.775 mA
Thermopile 2000 Hz 200 ms 0.170 mA
Thermistor 2000 Hz 10 ms 0.126 mA

25

TinyOS: More Performance
Numbers

•  Byte copy – 8 cycles, 2 microsecond
•  Post Event – 10 cycles
•  Context Switch – 51 cycles
•  Interrupt – h/w: 9 cycles, s/w: 71 cycles

26

TinyOS: Size
Code size for ad hoc networking

application

0

500

1000

1500

2000

2500

3000

3500

B
yt
es

Interrupts
Message Dispatch
Initilization
C-Runtime
Light Sensor
Clock
Scheduler
Led Control
Messaging Layer
Packet Layer
Radio Interface
Routing Application
Radio Byte Encoder

Scheduler: 144 Bytes code
Totals: 3430 Bytes code

 226 Bytes data

27

TinyOS: Summary

Matches both
•  Hardware requirements

–  power conservation, size
•  Application requirements

–  diversity (through modularity), event-driven,
real time

28

Discussion

29

System Robustness
@ Individual sensor-node OS level:

–  Small, therefore fewer bugs in code (compared to say Linux)
–  TinyOS: efficient network interfaces and power conservation
–  Importance? Failure of a few sensor nodes can be made up

by the distributed protocol
@ Level of Protocols (for data aggregation)

–  Don’t send raw data to base station
•  Too much power consumed

–  Need for fault-tolerant protocols
•  Nodes can fail due to deployment/fab; communication medium lossy

 e.g., ad-hoc routing to base station:
•  TinyOS’s Spanning Tree Routing: nodes build a spanning tree using

their neighbors and route data towards root; intermediate nodes
aggregate data from children and send to parent

–  simple but will partition on failures
•  Better: denser graph (e.g., DAG) - more robust, but more expensive

maintenance, and worry about double-counting values
30

Scalability
@ OS level ?
 TinyOS:

–  Modularized and generic interfaces admit a variety of
applications

–  Correct direction for future technology
•  Growth rates: data > storage > CPU > communication > batteries

–  Move functionality from base station into sensor nodes
–  In sensor nodes, move functionality if possible from s/w to

h/w
@ Application-level ?

–  Need: Applications written with scalability in mind
@ Level of protocols?

–  Need: protocols that scale well with a thousand or a million
nodes 31

Etcetera
•  Option: ASICs versus generic-sensors

–  Performance vs. applicability vs. money
•  Event-driven model to the extreme: Asynchronous

VLSI
–  No system clock on motherboard!

•  Need: Self-sufficient (and self-stabilizing) sensor
networks
–  In-network processing, monitoring, and healing

•  Need: Scheduling
–  Of Computations across networked nodes

•  Need: Security, and Privacy
•  Need: Protocols for anonymous sensor nodes

–  No IP/MAC addresses, so need random addresses
32

Other Projects
•  Berkeley

–  TOSSIM (+TinyViz)
•  TinyOS simulator (+ visualization GUI)

–  TinyDB
•  Querying a sensor net like a database table (every row ~ one

sensor)
–  Maté, Trickle

•  Virtual machine for TinyOS motes, code update propagation in
sensor networks for automatic reprogramming.

•  Several projects in other universities too
–  UI, UCLA: networked vehicle testbed

33

Civilian Mote Deployment
Examples

•  Environmental Observation and Forecasting
(EOFS)

•  Collecting data from the Great Duck Island
•  Retinal prosthesis chips

34

