
CS 425 / ECE 428
Distributed Systems

Fall 2015
Indranil Gupta (Indy)

Nov 5, 2015
Lecture 22: Stream Processing, Graph

Processing All slides © IG

•  Why Stream Processing
•  Storm

Stream Processing: What We’ll Cover

•  Large amounts of data => Need for real-time views of
data
•  Social network trends, e.g., Twitter real-time search
•  Website statistics, e.g., Google Analytics
•  Intrusion detection systems, e.g., in most datacenters

•  Process large amounts of data
•  With latencies of few seconds
•  With high throughput

Stream Processing Challenge

•  Batch Processing => Need to wait for entire computation
on large dataset to complete

•  Not intended for long-running stream-processing

MapReduce?

•  Apache Project
•  http://storm.apache.org/
•  Highly active JVM project
•  Multiple languages supported via API

•  Python, Ruby, etc.

•  Used by over 30 companies including
•  Twitter: For personalization, search
•  Flipboard: For generating custom feeds
•  Weather Channel, WebMD, etc.

Enter Storm

•  Tuples
•  Streams
•  Spouts
•  Bolts
•  Topologies

Storm Components

•  An ordered list of elements
•  E.g., <tweeter, tweet>

•  E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>
•  E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

•  E.g., <URL, clicker-IP, date, time>
•  E.g., <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>
•  E.g., <coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>

Tuple

Tuple

•  Sequence of tuples
•  Potentially unbounded in number of tuples

•  Social network example:
•  <“Miley Cyrus”, “Hey! Here’s my new song!”>,
 <“Justin Bieber”, “Hey! Here’s MY new song!”>,
 <“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, …

•  Website example:
•  <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>, <coursera.org,

101.102.103.105, 4/4/2014, 10:35:42>, …

Stream

Tuple Tuple Tuple

•  A Storm entity (process) that is a source of streams
•  Often reads from a crawler or DB

Spout

Tuple Tuple Tuple

•  A Storm entity (process) that
•  Processes input streams
•  Outputs more streams for other bolts

Bolt

•  A directed graph of spouts and bolts (and output bolts)
•  Corresponds to a Storm “application”

Topology

•  Can have cycles if the application
 requires it

Topology

•  Operations that can be performed
•  Filter: forward only tuples which satisfy a condition
•  Joins: When receiving two streams A and B, output all pairs

(A,B) which satisfy a condition
•  Apply/transform: Modify each tuple according to a function
•  And many others

•  But bolts need to process a lot of data
•  Need to make them fast

Bolts come in many Flavors

•  Have multiple processes (“tasks”) constitute a bolt
•  Incoming streams split among the tasks
•  Typically each incoming tuple goes to one task in the bolt

•  Decided by “Grouping strategy”

•  Three types of grouping are popular

Parallelizing Bolts

•  Shuffle Grouping
•  Streams are distributed evenly among the bolt’s tasks
•  Round-robin fashion

•  Fields Grouping
•  Group a stream by a subset of its fields
•  E.g., All tweets where twitter username starts with [A-M,a-m,0-4] goes to

task 1, and all tweets starting with [N-Z,n-z,5-9] go to task 2

•  All Grouping
•  All tasks of bolt receive all input tuples
•  Useful for joins

Grouping

•  Master node
•  Runs a daemon called Nimbus
•  Responsible for

•  Distributing code around cluster
•  Assigning tasks to machines
•  Monitoring for failures of machines

•  Worker node
•  Runs on a machine (server)
•  Runs a daemon called Supervisor
•  Listens for work assigned to its machines
•  Runs “Executors”(which contain groups of tasks)

•  Zookeeper
•  Coordinates Nimbus and Supervisors communication
•  All state of Supervisor and Nimbus is kept here

Storm Cluster

•  A tuple is considered failed when its topology (graph) of
resulting tuples fails to be fully processed within a specified
timeout

•  Anchoring: Anchor an output to one or more input tuples
•  Failure of one tuple causes one or more tuples to replayed

Failures

•  Emit(tuple, output)
•  Emits an output tuple, perhaps anchored on an input tuple (first argument)

•  Ack(tuple)
•  Acknowledge that you (bolt) finished processing a tuple

•  Fail(tuple)
•  Immediately fail the spout tuple at the root of tuple topology if there is an

exception from the database, etc.
•  Must remember to ack/fail each tuple

•  Each tuple consumes memory. Failure to do so results in memory leaks.

API For Fault-Tolerance (OutputCollector)

Twitter’s Heron System

•  Fixes the inefficiencies of Storm’s acking mechanism (among other things)
•  Uses backpressure: a congested downstream tuple will ask upstream tuples

to slow or stop sending tuples
1. TCP Backpressure: uses TCP windowing mechanism to propagate
backpressure
2. Spout Backpressure: node stops reading from its upstream spouts
3. Stage by Stage Backpressure: think of the topology as stage-based, and
propagate back via stages
•  Use:

•  Spout+TCP, or
•  Stage by Stage + TCP

•  Beats Storm throughput handily (see Heron paper)

•  Processing data in real-time a big requirement today
•  Storm

•  And other sister systems, e.g., Spark Streaming, Heron

•  Parallelism
•  Application topologies
•  Fault-tolerance

Summary: Stream Processing

•  Distributed Graph Processing
•  Google’s Pregel system

•  Inspiration for many newer graph processing
systems: Piccolo, Giraph, GraphLab,
PowerGraph, LFGraph, X-Stream, etc.

Graph Processing: What We’ll Cover

•  Large graphs are all around us
•  Internet Graph: vertices are routers/switches and edges

are links
•  World Wide Web: vertices are webpages, and edges are

URL links on a webpage pointing to another webpage
•  Called “Directed” graph as edges are uni-directional

•  Social graphs: Facebook, Twitter, LinkedIn
•  Biological graphs: Brain neurons, DNA interaction

graphs, ecosystem graphs, etc.

Lots of Graphs

Source:	Wikimedia	Commons,	Wikipedia	

•  Need to derive properties from these graphs
•  Need to summarize these graphs into statistics
•  E.g., find shortest paths between pairs of vertices

•  Internet (for routing)
•  LinkedIn (degrees of separation)

•  E.g., do matching
•  Dating graphs in match.com (for better dates)

•  PageRank
•  Web Graphs
•  Google search, Bing search, Yahoo search: all rely on this

•  And many (many) other examples!

Graph Processing Operations

•  Because these graphs are large!
•  Human social network has 100s Millions of vertices and

Billions of edges
•  WWW has Millions of vertices and edges

•  Hard to store the entire graph on one server and
process it
•  On one beefy server: may be slow, or may be very

expensive (performance to cost ratio very low)
•  Use distributed cluster/cloud!

Why Hard?

•  Works in iterations
•  Each vertex assigned a value
•  In each iteration, each vertex:

1.  Gather: Gathers values from its immediate neighbors
(vertices who join it directly with an edge). E.g., @A:
BàA, CàA, DàA,…

2.  Apply: Does some computation using its own value and its
neighbors values.

3.  Scatter: Updates its new value and sends it out to its
neighboring vertices. E.g., AàB, C, D, E

•  Graph processing terminates after: i) fixed iterations, or ii)
vertices stop changing values

Typical Graph Processing Application

A

B
C

D
E

•  Multi-stage Hadoop
•  Each stage == 1 graph iteration
•  Assign vertex ids as keys in the reduce phase
J  Well-known
L  At the end of every stage, transfer all vertices over

network (to neighbor vertices)
L  All vertex values written to HDFS (file system)
L  Very slow!

Hadoop/MapReduce to the Rescue?

•  “Think like a vertex”
•  Originally by Valiant (1990)

Bulk Synchronous Parallel Model

Source:	http://en.wikipedia.org/wiki/Bulk_synchronous_parallel		

•  “Think like a vertex”
•  Assign each vertex to one server
•  Each server thus gets a subset of vertices
•  In each iteration, each server performs Gather-Apply-Scatter

for all its assigned vertices
•  Gather: get all neighboring vertices’ values
•  Apply: compute own new value from own old value and gathered

neighbors’ values
•  Scatter: send own new value to neighboring vertices

Basic Distributed Graph Processing

•  How to decide which server a given vertex is assigned
to?

•  Different options
•  Hash-based: Hash(vertex id) modulo number of servers

•  Remember consistent hashing from P2P systems?!
•  Locality-based: Assign vertices with more neighbors to the

same server as its neighbors
•  Reduces server to server communication volume after each iteration
•  Need to be careful: some “intelligent” locality-based schemes may

take up a lot of upfront time and may not give sufficient benefits!

Assigning Vertices

•  Pregel uses the master/worker model
•  Master (one server)

•  Maintains list of worker servers
•  Monitors workers; restarts them on failure
•  Provides Web-UI monitoring tool of job progress

•  Worker (rest of the servers)
•  Processes its vertices
•  Communicates with the other workers

•  Persistent data is stored as files on a distributed storage system
(such as GFS or BigTable)

•  Temporary data is stored on local disk

Pregel System By Google

1.  Many copies of the program begin executing on a cluster

2.  The master assigns a partition of input (vertices) to each worker
•  Each worker loads the vertices and marks them as active

3.  The master instructs each worker to perform a iteration
•  Each worker loops through its active vertices & computes for each vertex

•  Messages can be sent whenever, but need to be delivered before the end of the iteration (i.e., the
barrier)

•  When all workers reach iteration barrier, master starts next iteration

4.  Computation halts when, in some iteration: no vertices are active and when no messages
are in transit

5.  Master instructs each worker to save its portion of the graph

Pregel Execution

•  Checkpointing
•  Periodically, master instructs the workers to save state of their partitions to

persistent storage
•  e.g., Vertex values, edge values, incoming messages

•  Failure detection
•  Using periodic “ping” messages from master à worker

•  Recovery

•  The master reassigns graph partitions to the currently available workers
•  The workers all reload their partition state from most recent available

checkpoint

Fault-Tolerance in Pregel

•  Shortest paths from one vertex to all vertices
•  SSSP: “Single Source Shortest Path”

•  On 1 Billion vertex graph (tree), with 300 workers (800
cores)
•  50 workers: 180 seconds
•  800 workers: 20 seconds

•  50 B vertices on 800 workers: 700 seconds (~12 minutes)
•  Pretty Fast!

How Fast Is It?

•  Lots of (large) graphs around us
•  Need to process these
•  MapReduce not a good match
•  Distributed Graph Processing systems: Pregel by Google
•  Many follow-up systems

•  Piccolo, Giraph: Pregel-like
•  GraphLab, PowerGraph, LFGraph, X-Stream: more

advanced

Summary: Graph Processing

Announcements

•  MP3 Demos Next Monday
•  Signup sheet on Piazza

