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•  Why Stream Processing 
•  Storm 

Stream Processing: What We’ll Cover 



•  Large amounts of data => Need for real-time views of 
data
•  Social network trends, e.g., Twitter real-time search
•  Website statistics, e.g., Google Analytics
•  Intrusion detection systems, e.g., in most datacenters

•  Process large amounts of data
•  With latencies of few seconds
•  With high throughput

Stream Processing Challenge 



•  Batch Processing => Need to wait for entire computation 
on large dataset to complete 

•  Not intended for long-running stream-processing 

MapReduce? 



•  Apache Project 
•  http://storm.apache.org/ 
•  Highly active JVM project
•  Multiple languages supported via API

•  Python, Ruby, etc.

•  Used by over 30 companies including
•  Twitter: For personalization, search
•  Flipboard: For generating custom feeds
•  Weather Channel, WebMD, etc.

Enter Storm 



•  Tuples
•  Streams
•  Spouts
•  Bolts
•  Topologies

Storm Components 



•  An ordered list of elements 
•  E.g., <tweeter, tweet> 

•  E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”> 
•  E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”> 

•  E.g., <URL, clicker-IP, date, time> 
•  E.g., <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40> 
•  E.g., <coursera.org, 101.102.103.105, 4/4/2014, 10:35:42> 

Tuple 

Tuple 



•  Sequence of tuples 
•  Potentially unbounded in number of tuples 

•  Social network example: 
•  <“Miley Cyrus”, “Hey! Here’s my new song!”>,  
      <“Justin Bieber”, “Hey! Here’s MY new song!”>,  
      <“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, … 

•  Website example: 
•  <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>, <coursera.org, 

101.102.103.105, 4/4/2014, 10:35:42>, … 

Stream 

Tuple Tuple Tuple 



•  A Storm entity (process) that is a source of streams
•  Often reads from a crawler or DB

Spout 

Tuple Tuple Tuple 



•  A Storm entity (process) that 
•  Processes input streams
•  Outputs more streams for other bolts

Bolt 



•  A directed graph of spouts and bolts (and output bolts) 
•  Corresponds to a Storm “application” 

Topology 



•  Can have cycles if the application 
 requires it 

Topology 



•  Operations that can be performed 
•  Filter: forward only tuples which satisfy a condition 
•  Joins: When receiving two streams A and B, output all pairs 

(A,B) which satisfy a condition 
•  Apply/transform: Modify each tuple according to a function 
•  And many others 

•  But bolts need to process a lot of data 
•  Need to make them fast 

Bolts come in many Flavors 



•  Have multiple processes (“tasks”) constitute a bolt
•  Incoming streams split among the tasks
•  Typically each incoming tuple goes to one task in the bolt

•  Decided by “Grouping strategy”

•  Three types of grouping are popular

Parallelizing Bolts 



•  Shuffle Grouping
•  Streams are distributed evenly among the bolt’s tasks
•  Round-robin fashion

•  Fields Grouping
•  Group a stream by a subset of its fields
•  E.g., All tweets where twitter username starts with [A-M,a-m,0-4] goes to 

task 1, and all tweets starting with [N-Z,n-z,5-9] go to task 2

•  All Grouping
•  All tasks of bolt receive all input tuples
•  Useful for joins

Grouping 



•  Master node
•  Runs a daemon called Nimbus
•  Responsible for 

•  Distributing code around cluster
•  Assigning tasks to machines
•  Monitoring for failures of machines

•  Worker node
•  Runs on a machine (server)
•  Runs a daemon called Supervisor
•  Listens for work assigned to its machines
•  Runs “Executors”(which contain groups of tasks)

•  Zookeeper
•  Coordinates Nimbus and Supervisors communication
•  All state of Supervisor and Nimbus is kept here

Storm Cluster 



•  A tuple is considered failed when its topology (graph) of 
resulting tuples fails to be fully processed within a specified 
timeout

•  Anchoring: Anchor an output to one or more input tuples
•  Failure of one tuple causes one or more tuples to replayed

Failures 



•  Emit(tuple, output)
•  Emits an output tuple, perhaps anchored on an input tuple (first argument)

•  Ack(tuple)
•  Acknowledge that you (bolt) finished processing a tuple

•  Fail(tuple)
•  Immediately fail the spout tuple at the root of tuple topology if there is an 

exception from the database, etc.
•  Must remember to ack/fail each tuple

•  Each tuple consumes memory. Failure to do so results in memory leaks.

API For Fault-Tolerance (OutputCollector) 



Twitter’s Heron System 

•  Fixes the inefficiencies of Storm’s acking mechanism (among other things) 
•  Uses backpressure: a congested downstream tuple will ask upstream tuples 

to slow or stop sending tuples 
1. TCP Backpressure: uses TCP windowing mechanism to propagate 
backpressure 
2. Spout Backpressure: node stops reading from its upstream spouts 
3. Stage by Stage Backpressure: think of the topology as stage-based, and 
propagate back via stages 
•  Use: 

•  Spout+TCP, or 
•  Stage by Stage + TCP 

•  Beats Storm throughput handily (see Heron paper) 



•  Processing data in real-time a big requirement today
•  Storm 

•  And other sister systems, e.g., Spark Streaming, Heron

•  Parallelism
•  Application topologies
•  Fault-tolerance

Summary: Stream Processing 



•  Distributed Graph Processing 
•  Google’s Pregel system 

•  Inspiration for many newer graph processing 
systems: Piccolo, Giraph, GraphLab, 
PowerGraph, LFGraph, X-Stream, etc. 

Graph Processing: What We’ll Cover 



•  Large graphs are all around us
•  Internet Graph: vertices are routers/switches and edges 

are links
•  World Wide Web: vertices are webpages, and edges are 

URL links on a webpage pointing to another webpage
•  Called “Directed” graph as edges are uni-directional

•  Social graphs: Facebook, Twitter, LinkedIn 
•  Biological graphs: Brain neurons, DNA interaction 

graphs, ecosystem graphs, etc. 

Lots of Graphs 

Source:	Wikimedia	Commons,	Wikipedia	



•  Need to derive properties from these graphs 
•  Need to summarize these graphs into statistics 
•  E.g., find shortest paths between pairs of vertices 

•  Internet (for routing)  
•  LinkedIn (degrees of separation) 

•  E.g., do matching  
•  Dating graphs in match.com (for better dates) 

•  PageRank 
•  Web Graphs 
•  Google search, Bing search, Yahoo search: all rely on this 

•  And many (many) other examples! 

Graph Processing Operations 



•  Because these graphs are large! 
•  Human social network has 100s Millions of vertices and 

Billions of edges 
•  WWW has Millions of vertices and edges 

•  Hard to store the entire graph on one server and 
process it 
•  On one beefy server: may be slow, or may be very 

expensive (performance to cost ratio very low) 
•  Use distributed cluster/cloud! 

Why Hard? 



•  Works in iterations
•  Each vertex assigned a value
•  In each iteration, each vertex:

1.  Gather: Gathers values from its immediate neighbors 
(vertices who join it directly with an edge). E.g., @A: 
BàA, CàA, DàA,…

2.  Apply: Does some computation using its own value and its 
neighbors values. 

3.  Scatter: Updates its new value and sends it out to its 
neighboring vertices. E.g., AàB, C, D, E

•  Graph processing terminates after: i) fixed iterations, or ii) 
vertices stop changing values

Typical Graph Processing Application 

A 

B 
C 

D 
E 



•  Multi-stage Hadoop
•  Each stage == 1 graph iteration
•  Assign vertex ids as keys in the reduce phase
J  Well-known
L  At the end of every stage, transfer all vertices over 

network (to neighbor vertices)
L  All vertex values written to HDFS (file system)
L  Very slow!

Hadoop/MapReduce to the Rescue? 



•  “Think like a vertex”
•  Originally by Valiant (1990)

Bulk Synchronous Parallel Model 

Source:	http://en.wikipedia.org/wiki/Bulk_synchronous_parallel		



•  “Think like a vertex” 
•  Assign each vertex to one server 
•  Each server thus gets a subset of vertices 
•  In each iteration, each server performs Gather-Apply-Scatter 

for all its assigned vertices 
•  Gather: get all neighboring vertices’ values 
•  Apply: compute own new value from own old value and gathered 

neighbors’ values 
•  Scatter: send own new value to neighboring vertices 

Basic Distributed Graph Processing 



•  How to decide which server a given vertex is assigned 
to? 

•  Different options 
•  Hash-based: Hash(vertex id) modulo number of servers 

•  Remember consistent hashing from P2P systems?! 
•  Locality-based: Assign vertices with more neighbors to the 

same server as its neighbors 
•  Reduces server to server communication volume after each iteration 
•  Need to be careful: some “intelligent” locality-based schemes may 

take up a lot of upfront time and may not give sufficient benefits! 

Assigning Vertices 



•  Pregel uses the master/worker model 
•  Master (one server) 

•  Maintains list of worker servers 
•  Monitors workers; restarts them on failure 
•  Provides Web-UI monitoring tool of job progress 

•  Worker (rest of the servers) 
•  Processes its vertices 
•  Communicates with the other workers 

•  Persistent data is stored as files on a distributed storage system 
(such as GFS or BigTable) 

•  Temporary data is stored on local disk 

Pregel System By Google 



1.  Many copies of the program begin executing on a cluster 

2.  The master assigns a partition of input (vertices) to each worker 
•  Each worker loads the vertices and marks them as active 

3.  The master instructs each worker to perform a iteration 
•  Each worker loops through its active vertices & computes for each vertex 

•  Messages can be sent whenever, but need to be delivered before the end of the iteration (i.e., the 
barrier) 

•  When all workers reach iteration barrier, master starts next iteration 

4.  Computation halts when, in some iteration: no vertices are active and when no messages 
are in transit 

5.  Master instructs each worker to save its portion of the graph 

Pregel Execution 



•  Checkpointing 
•  Periodically, master instructs the workers to save state of their partitions to 

persistent storage 
•  e.g., Vertex values, edge values, incoming messages 

•  Failure detection  
•  Using periodic “ping” messages from master à worker 

•  Recovery 

•  The master reassigns graph partitions to the currently available workers 
•  The workers all reload their partition state from most recent available 

checkpoint 

Fault-Tolerance in Pregel 



•  Shortest paths from one vertex to all vertices 
•  SSSP: “Single Source Shortest Path” 

•  On 1 Billion vertex graph (tree), with 300 workers (800 
cores) 
•  50 workers: 180 seconds 
•  800 workers: 20 seconds 

•  50 B vertices on 800 workers: 700 seconds (~12 minutes) 
•  Pretty Fast! 

How Fast Is It? 



•  Lots of (large) graphs around us 
•  Need to process these 
•  MapReduce not a good match 
•  Distributed Graph Processing systems: Pregel by Google 
•  Many follow-up systems 

•  Piccolo, Giraph: Pregel-like 
•  GraphLab, PowerGraph, LFGraph, X-Stream: more 

advanced 

Summary: Graph Processing 



Announcements 

•  MP3 Demos Next Monday 
•  Signup sheet on Piazza 


