

WHY SYNCHRONIZATION?

* You want to catch a bus at 6.05 pm, but your watch is off by
15 minutes

— What if your watch is Late by 15 minutes?
* You’ll miss the bus!
— What if your watch is Fast by 15 minutes?

* You’ll end up unfairly waiting for a longer time than you
intended

 Time synchronization is required for both
— Correctness

— Fairness

SYNCHRONIZATION IN THE CLOoUD

* Cloud airline reservation system

» Server A receives a client request to purchase last ticket on flight
ABC 123.

« Server A timestamps purchase using local clock 9h:15m:32.45s,
and logs it. Replies ok to client.

« That was the last seat. Server A sends message to Server B
saying “flight full.”

* B enters “Flight ABC 123 full” + its own local clock value
(which reads 9h:10m:10.11s) into its log.

« Server C queries A’s and B’s logs. Is confused that a client
purchased a ticket at A after the flight became full at B.

* This may lead to further incorrect actions by C

 End hosts in Internet-based systems (like clouds)

— Each have their own clocks

— Unlike processors (CPUs) within one server or
workstation which share a system clock

* Processes in Internet-based systems follow an
asynchronous system model

— No bounds on
* Message delays
* Processing delays

— Unlike multi-processor (or parallel) systems which
follow a synchronous system model

SOME DEFINITIONS

* An Asynchronous Distributed System consists of a number of
processes

» Each process has a state (values of variables).

« Each process takes actions to change its state, which may be an
instruction or a communication action (send, receive).

. An event is the occurrence of an action.

« Each process has a local clock — events within a process can be
assigned timestamps, and thus ordered linearly.

* But—in a distributed system, we also need to know the time
order of events across different processes.

CLoCcK SKEW VS. CLOCK DRIFT

« Each process (running at some end host) has its own clock.

When comparing two clocks at two processes:

* Clock Skew = Relative Difference in clock values of two processes
» Like distance between two vehicles on a road
* Clock Drift = Relative Difference in clock frequencies (rates) of two processes
 Like difference in speeds of two vehicles on the road
* A non-zero clock skew implies clocks are not synchronized.
* A non-zero clock drift causes skew to increase (eventually).
— If faster vehicle is ahead, it will drift away

— If faster vehicle is behind, it will catch up and then drift away

How OFTEN TO SYNCHRONIZE?

» Maximum Drift Rate (MDR) of a clock

 Absolute MDR is defined relative to Coordinated Universal
Time (UTC). UTC is the “correct” time at any point of time.

 MDR of a process depends on the environment.

Max drift rate between two clocks with similar MDR 1s 2 *
MDR

* Given a maximum acceptable skew M between any pair of
clocks, need to synchronize at least once every: M / (2 * MDR)
time units

— Since time = distance/speed

EXTERNAL VS INTERNAL SYNCHRONIZATION

* Consider a group of processes
« External Synchronization
— Each process C(1)’s clock 1s within a bound D of a well-known clock S external to the group
— |C(@{)—S| <D at all times
— External clock may be connected to UTC (Universal Coordinated Time) or an atomic clock
— E.g., Cristian’s algorithm, NTP
e Internal Synchronization
— Every pair of processes in group have clocks within bound D
— |C(@{) — C(G)| <D at all times and for all processes 1, j
— E.g., Berkeley algorithm

EXTERNAL VS INTERNAL SYNCHRONIZATION (2)

« [External Synchronization with D => Internal
Synchronization with 2*D

e Internal Synchronization does not imply External
Synchronization

— In fact, the entire system may drift away from the
external clock S!

« Algorithms for Clock Synchronization

e External time synchronization

* All processes P synchronize with a time server S

Set clock to t

Time
>

P
What s the Yime?

Heywe's the time t!

S

Check local clock to find time t

By the time response message 1s received at P,
time has moved on

P’s time set to ¢ 1s inaccurate!
Inaccuracy a function of message latencies

Since latencies unbounded in an asynchronous
system, the inaccuracy cannot be bounded

CRISTIAN'S ALGORITHM

* P measures the round-trip-time RTT of message exchange

\ Set clock to t lime

>
Whats the time?
ere’s the time t!
>

Check local clock to find time t

CRISTIAN'S ALGORITHM (2)

P measures the round-trip-time RTT of message exchange
* Suppose we know the minimum P - S latency minl
* And the minimum S - P latency min2

— minl and min2 depend on Operating system overhead to buffer messages, TCP
time to queue messages, etc.

RTT
[A v Set clock to t

> Time
P What s\he time?

ere’s the time t!

S | >

Check local clock to find time t

CRISTIAN'S ALGORITHM (3)

* P measures the round-trip-time RTT of message exchange
* Suppose we know the minimum P = S latency minl
* And the minimum S - P latency min2

— minl and min2 depend on Operating system overhead to buffer messages, TCP
time to queue messages, etc.

» The actual time at P when it receives response is between [t+min2, t+RTT-min1]

RTT
[A v Set clock to t

> Time
P What s\he time?

ere’s the time t!

S | >

Check local clock to find time t

CRISTIAN'S ALGORITHM (4)

The actual time at P when it receives response 1s between [t+min2, t+RTT-
minl |

« P sets its time to halfway through this interval
— To: t+ (RTT+min2-minl)/2

* Error is at most (RTT-min2-min1)/2
— Bounded!

v Set clock to t

RTT
> Time
P What s\he time?
ere’s the time t!
>

Check local clock to find time t

Allowed to increase clock value but should never
decrease clock value

— May violate ordering of events within the same
process

Allowed to increase or decrease speed of clock

If error is too high, take multiple readings and
average them

NTP = NETWORK TIME PROTOCOL

e NTP Servers organized 1n a tree
* Each Client = a leaf of tree
« Each node synchronizes with its tree parent

Primary servers

Secondary servers

Tertiary servers

Client

NTP ProTOCOL

Message I recv time trl :
& Message 2 send time ts2

Child e

Let’s start protocol e
essage] tsl, tr2
Parent i

Message 2 recv tzme tr2

Message [send time ts1

WHAT THE CHILD DOES

* Child calculates offset between its
clock and parent’s clock

e Usestsl, trl, ts2, tr2

* Offset is calculated as
o= (trl —tr2 +ts2 —tsl)/2

WHyY o0 = (tr1 - tr2 + ts2 - ts1)/27

o Offseto=(trl —tr2 +ts2—1tsl)/2
* Let’s calculate the error
* Suppose real offset is oreal
— Child 1s ahead of parent by oreal
— Parent is ahead of child by -oreal
* Suppose one-way latency of Message 1 is L/

(L2 for Message 2)
e No one knows L7 or L2!
e Then

trl =tsl + L1 + oreal
tr2 =ts2 + L2 — oreal

WHyY 0 = (tr1 - tr2 + ts2 - ts1)/27 (2)

e Then
trl =tsl + LI + oreal
tr2 =ts2 + L2 — oreal
* Subtracting second equation from the first

oreal = (trl —tr2 + ts2 —tsl)/2 + (L2 —-L1)/2
=>oreal =0 + (L2—-LI1)/2

=> |oreal —o| < |(L2—-L1)/2| <|(L2 + L1)/2|
— Thus, the error 1s bounded by the round-trip-
time

AND YET...

« We still have a non-zero error!
* We just can’t seem to get rid of error
— Can’t, as long as message latencies are non-zero

 (Can we avoid synchronizing clocks altogether, and still be able to
order events?

ORDERING EVENTS IN A DISTRIBUTED SYSTEM

 To order events across processes, trying to sync clocks is one approach
 What if we instead assigned timestamps to events that were not absolute time?

* As long as these timestamps obey causality, that
would work
If an event A causally happens before another
event B, then timestamp(A) < timestamp(B)
Humans use causality all the time
E.g., I enter a house only after I unlock it
E.g., You receive a letter only after I send it

LoGICAL (OR LAMPORT) ORDERING

* Proposed by Leslie Lamport in the 1970s
e Used in almost all distributed systems since then

* Almost all cloud computing systems use some
form of logical ordering of events

LOGICAL (OR LAMPORT) ORDERING(2)

* Define a logical relation Happens-Before among pairs of events
« Happens-Before denoted as —

Three rules

On the same process: a — b, if time(a) < time(b) (using the local clock)
If p1 sends m to p2: send(m) — receive(m)

w2 M=

(Transitivity) Ifa = b and b — cthen a — ¢

Creates a partial order among events
— Not all events related to each other via —

Time

P2 >

P3 I. J >

While P1 and P3 each have an event
labeled E, these are different events as

they occur at different processes. > Message

® Instruction or step

HAPPENS-BEFORE

P2 >
P3 le L
- A>B ® Instruction or step
* B2F > Message

« A2F

HAPPENS-BEFORE (2)

} \J ,

« H> G
« F>J ® Instruction or step
* H>]J > Message

e C—2]

IN PRACTICE: LAMPORT TIMESTAMPS

* Goal: Assign logical (Lamport) timestamp to each event
 Timestamps obey causality
* Rules

— Each process uses a local counter (clock) which is an integer

» 1nitial value of counter is zero

A process increments its counter when a send or an
instruction happens at it. The counter is assigned to the event
as its timestamp.

A send (message) event carries its timestamp
For a receive (message) event the counter is updated by

max(local clock, message timestamp) + 1

Time

P2 >

P3 @ >

® Instruction or step

> Message

LAMPORT TIMESTAMPS

- -
SR

® Instruction or step

> Message

LAMPORT TIMESTAMPS

Pl @ @ >
\ / \ Time
P2 >

P3

® Instruction or step

> Message

LAMPORT TIMESTAMPS

. : \

® Instruction or step

> Message

LAMPORT TIMESTAMPS

® Instruction or step

> Message

LAMPORT TIMESTAMPS

max(3, 4)+1

. : \

® Instruction or step

> Message

LAMPORT TIMESTAMPS

- T
SN

® Instruction or step

> Message

OBEYING CAUSALITY

P2 >

P3 Io J >

A>B:ul1<2 ® Instruction or step
B>F:2<3

A>F:1<3 > Message

OBEYING CAUSALITY (2)

P2

P3

I.
H>G:1<4 ® Instruction or step
F>J :3<7
H>J 1<7 > Message

C—>J :3<7

NoT ALWAYS IMPLYING CAUSALITY

. . >
G/ \Time
>

Pl

P2

P3

E

|

2C>F?:3=3
"H>C?::1<3
(C, F) and (H, C) are pairs of
concurrent events

® Instruction or step

> Message

CONCURRENT EVENTS

* A pair of concurrent events doesn’t have a causal
path from one event to another (either way, in the

pair)
« Lamport timestamps not guaranteed to be ordered or
unequal for concurrent events
* OKk, since concurrent events are not causality related!
« Remember
El - E2 = timestamp(E1) < timestamp (E2), BUT
timestamp(E1) < timestamp (E2) =
{E1 = E2} OR {E1 and E2 concurrent}

* (Can we have causal or logical timestamps from which we can tell if
two events are concurrent or causally related?

VECTOR TIMESTAMPS

» Used in key-value stores like Riak

« Each process uses a vector of integer clocks

» Suppose there are N processes in the group 1...N
» Each vector has N elements

* Process i maintains vector V,|1...N]

jth element of vector clock at process i, V [j], 1s i’s
knowledge of latest events at process j

AsSIGNING VECTOR TIMESTAMPS

* Incrementing vector clocks

1. On an instruction or send event at process i, it increments only its ith element
of its vector clock

Each message carries the send-event’s vector timestamp V, . i.oo[/... V]
3. On receiving a message at process i:

Vil =Vl +1
VI[I] - max(Vmessage[ﬂ’ VI[I]) fOl’j ;é i

P2 >

P3 I. J >

® Instruction or step

> Message

VECTOR TIMESTAMPS

= T~
Y

VECTOR TIMESTAMPS

= T~
Y

VECTOR TIMESTAMPS

Pl ® ® >
\ / \ Time
P2 >

0 }/ \
> 1 S

P3 - ®

VECTOR TIMESTAMPS

Pl @ - @ >
\\\\ 2 / \ Time
P2 P \ >
1.1 2.2.1 \
@ >

P3

VECTOR TIMESTAMPS

Pl . N ® A >
\\ / \ Time
P2 >

/

P3 @ \>

CAUSALLY-RELATED ...

® VT,=VT,,
iff (if and only if)
VT,[i]=VT,[i], foralli=1, ... ,N
« VT, <VT,,
iff VT, [i]<VT,[i], foralli=1,...,N
 Two events are causally related iff
VT, <VT,, 1e,,
iff VI, <VT, &
there exists j such that
1<j<N&VT,j]<VT,[j]

..« OR NOT CAUSALLY-RELATED

« Two events VT, and VT, are concurrent
i
NOT (VT, <VT,) AND NOT (VT, <VT))

We’ll denote this as VT, ||| VT,

OBEYING CAUSALITY

A= B :: (1,0,0) < (2,0,0)
B> TF:(2,00)<(2,2,1)
AT (1,0,00<(2,2,1)

OBEYING CAUSALITY (2)

H-> G:(0,0,1)<(2,3,1)
F2>J ::(2,2,1)<(5,3,3)
H->1T ::(0,0,1)<(53,3)
C—>1J ::(3,0,0)<(5,3,3)

IDENTIFYING CONCURRENT EVENTS

C&F::(3,0,0)]| (2,2,1)
H & C::(0,0,1) || (3,0,0)
(C, F) and (H, C) are pairs of concurrent events

LoGICAL TIMESTAMPS: SUMMARY

 Lamport timestamps

— Integer clocks assigned to events

— Obeys causality

— Cannot distinguish concurrent events
* Vector timestamps

— Obey causality

— By using more space, can also identify
concurrent events

TIME AND ORDERING: SUMMARY

e Clocks are unsynchronized in an asynchronous distributed system
* But need to order events, across processes!
 Time synchronization

— Ciristian’s algorithm

— NTP

— Berkeley algorithm

— But error a function of round-trip-time

 Can avoid time sync altogether by instead
assigning logical timestamps to events

