
CS 425 / ECE 428
Distributed Systems

Fall 2014
Indranil Gupta (Indy)

Lecture 4: Failure Detection and
Membership

All slides © IG

•  You’ve been put in charge of a datacenter, and your
manager has told you, “Oh no! We don’t have any failures
in our datacenter!”

•  Do you believe him/her?

•  What would be your first responsibility?
•  Build a failure detector
•  What are some things that could go wrong if you didn’t do

this?

A Challenge

… not the exception, in datacenters.

Say, the rate of failure of one machine (OS/disk/motherboard/network,
etc.) is once every 10 years (120 months) on average.

When you have 120 servers in the DC, the mean time to failure (MTTF)
of the next machine is 1 month.

When you have 12,000 servers in the DC, the MTTF is about once every
7.2 hours!

Soft crashes and failures are even more frequent!

Failures are the Norm

•  You have a few options

1. Hire 1000 people, each to monitor one machine in
the datacenter and report to you when it fails.

2. Write a failure detector program (distributed) that
automatically detects failures and reports to your
workstation.

Which is more preferable, and why?

To build a failure detector

5

Target Settings

•  Process ‘group’-based systems
– Clouds/Datacenters
– Replicated servers
– Distributed databases

•  Crash-stop/Fail-stop process failures

6

Group Membership Service
Application Queries
 e.g., gossip, overlays,

 DHT’s, etc.

Membership
Protocol

Group
Membership List

 joins, leaves, failures
of members

Unreliable
Communication

Application Process pi

Membership List

7

Two sub-protocols

Dissemination
Failure Detector

Application Process pi
Group

Membership List

Unreliable
Communication

• Complete list all the time (Strongly consistent)
• Virtual synchrony

• Almost-Complete list (Weakly consistent)
• Gossip-style, SWIM, …

• Or Partial-random list (other systems)
• SCAMP, T-MAN, Cyclon,…

Focus of this series of lecture

 pj

8

Large Group: Scalability A
Goal

this is us (pi)

Unreliable Communication
Network

1000’s of processes

Process Group
“Members”

9

 pj I pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure Detector II

Dissemination III

Crash-stop Failures only

Next
•  How do you design a group membership

protocol?

10

11

I. pj crashes
•  Nothing we can do about it!
•  A frequent occurrence
•  Common case rather than exception
•  Frequency goes up linearly with size of

datacenter

12

II. Distributed Failure Detectors:
Desirable Properties

•  Completeness = each failure is detected
•  Accuracy = there is no mistaken detection
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

13

Distributed Failure Detectors:
Properties

•  Completeness
•  Accuracy
•  Speed

–  Time to first detection of a failure
•  Scale

–  Equal Load on each member
–  Network Message Load

Impossible together in
lossy networks [Chandra
and Toueg]

If possible, then can
solve consensus!

14

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

15

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

Time until some
process detects the failure

16

What Real Failure Detectors
Prefer

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guaranteed
Partial/Probabilistic

 guarantee

Time until some
process detects the failure

No bottlenecks/single
failure point

17

Failure Detector Properties

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

In spite of
arbitrary simultaneous
process failures

18

Centralized Heartbeating

pi, Heartbeat Seq. l++

pi L Hotspot

pj • Heartbeats sent periodically
• If heartbeat not received from pi within
timeout, mark pi as failed

19

Ring Heartbeating

pi, Heartbeat Seq. l++
L Unpredictable on
simultaneous multiple

 failures
pi

…

pj

20

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

J Equal load per member

pi

pj

Next
•  How do we increase the robustness of all-to-all

heartbeating?

21

22

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

J Good accuracy
properties pi

23

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

• Nodes periodically gossip their membership
list: pick random nodes, send it list

• On receipt, it is merged with local membership
list

• When an entry times out, member is marked
as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

24

Gossip-Style Failure Detection
•  If the heartbeat has not increased for more than

Tfail seconds,
the member is considered failed

•  And after Tcleanup seconds, it will delete the
member from the list

•  Why two different timeouts?

25

Gossip-Style Failure Detection

•  What if an entry pointing to a failed node is

deleted right after Tfail (=24) seconds?

•  Fix: remember for another Tfail

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4
3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at node 2

26

Multi-level Gossiping • Network topology is hierarchical

• Random gossip target selection
=> core routers face O(N) load
(Why?)

• Fix: In subnet i, which contains
ni nodes, pick gossip target in
your subnet with probability (1-1/
ni)

• Router load=O(1)

• Dissemination time=O(log(N))

• What about latency for multi-
level topologies?

[Gupta et al, TPDS 06]

Router

N/2 nodes in a subnet

N/2 nodes in a subnet

(Slide corrected after lecture)

27

Analysis/Discussion
•  What happens if gossip period Tgossip is decreased?
•  A single heartbeat takes O(log(N)) time to propagate. So: N heartbeats

take:
–  O(log(N)) time to propagate, if bandwidth allowed per node is allowed to be

O(N)
–  O(N.log(N)) time to propagate, if bandwidth allowed per node is only O(1)
–  What about O(k) bandwidth?

•  What happens to Pmistake (false positive rate) as Tfail ,Tcleanup is increased?
•  Tradeoff: False positive rate vs. detection time vs. bandwidth

Next
•  So, is this the best we can do? What is the best

we can do?

28

29

Failure Detector Properties …
•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

30

…Are application-defined
Requirements

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

31

•  Completeness
•  Accuracy
•  Speed
– Time to first detection of a failure

•  Scale
– Equal Load on each member
– Network Message Load

Guarantee always
Probability PM(T)
T time units

N*L: Compare this across protocols

…Are application-defined
Requirements

32

All-to-All Heartbeating

pi, Heartbeat Seq. l++

…

pi Every T units

L=N/T

33

Gossip-style Heartbeating

Array of
Heartbeat Seq. l
for member subset

pi

Every tg units
=gossip period,
send O(N) gossip
message

T=logN * tg
L=N/tg=N*logN/T

•  Worst case load L* per member in the group
(messages per second)
–  as a function of T, PM(T), N
–  Independent Message Loss probability pml

• 

34

What’s the Best/Optimal we can
do?

T
TPM
pml

1.
)log(
))(log(L*=

Slide changed after lecture

35

Heartbeating
•  Optimal L is independent of N (!)
•  All-to-all and gossip-based: sub-optimal

•  L=O(N/T)
•  try to achieve simultaneous detection at all processes
•  fail to distinguish Failure Detection and Dissemination

components

Ü Key:
 Separate the two components
 Use a non heartbeat-based Failure Detection Component

Next
•  Is there a better failure detector?

36

37

SWIM Failure Detector Protocol

Protocol period
= T’ time units

X
K random
processes

pi

ping

ack

ping-req

ack

• random pj

X

ack

ping

• random K

pj

38

SWIM versus Heartbeating

Process Load

First Detection
Time

Constant

Constant

O(N)

O(N)

SWIM

For Fixed :
•  False Positive Rate
•  Message Loss Rate

Heartbeating

Heartbeating

39

SWIM Failure Detector
Parameter SWIM

First Detection Time
 •  Expected periods

•  Constant (independent of group size)

Process Load •  Constant per period
•  < 8 L* for 15% loss

False Positive Rate •  Tunable (via K)
•  Falls exponentially as load is scaled

Completeness •  Deterministic time-bounded
•  Within O(log(N)) periods w.h.p.

⎥⎦

⎤
⎢⎣

⎡
−1e
e

40

Accuracy, Load

•  PM(T) is exponential in -K. Also depends on pml (and
pf)
–  See paper

•  for up to 15 % loss rates 28
*
<

L
L 8

*
][
<

L
LE

41

•  Prob. of being pinged in T’=

•  E[T] =

•  Completeness: Any alive member detects failure
–  Eventually
–  By using a trick: within worst case O(N) protocol periods

Detection Time

1
.T'
−e
e

11 1)11(1 −− −=−− e
N

N

42

Time-bounded Completeness
•  Key: select each membership element once as a

ping target in a traversal
– Round-robin pinging
– Random permutation of list after each traversal

•  Each failure is detected in worst case 2N-1
(local) protocol periods

•  Preserves FD properties

This slide not covered (not in syllabus)

Next
•  How do failure detectors fit into the big picture

of a group membership protocol?
•  What are the missing blocks?

43

44

 pj I pj crashed

Group Membership Protocol

Unreliable Communication
Network

pi
Some process
finds out quickly

Failure Detector II

Dissemination III

Crash-stop Failures only

HOW ? HOW ? HOW ? HOW ?

45

Dissemination Options
•  Multicast (Hardware / IP)
– unreliable
– multiple simultaneous multicasts

•  Point-to-point (TCP / UDP)
– expensive

•  Zero extra messages: Piggyback on Failure
Detector messages
–  Infection-style Dissemination

46

Infection-style Dissemination

Protocol period
= T time units

X

pi

ping

ack

ping-req

ack

• random pj

X

ack

ping

• random K

pj

Piggybacked
membership
information

K random
processes

47

Infection-style Dissemination
•  Epidemic/Gossip style dissemination
–  After protocol periods, processes would not

have heard about an update
•  Maintain a buffer of recently joined/evicted processes
–  Piggyback from this buffer
–  Prefer recent updates

•  Buffer elements are garbage collected after a while
–  After protocol periods, i.e., once they’ve propagated

through the system; this defines weak consistency
)log(. Nλ

)log(. Nλ

€

−(2λ−2)N

This slide not covered (not in syllabus)

48

Suspicion Mechanism
•  False detections, due to
– Perturbed processes
– Packet losses, e.g., from congestion

•  Indirect pinging may not solve the problem
•  Key: suspect a process before declaring it as

failed in the group

49

Suspicion Mechanism
Dissmn
FD

pi

Alive

Suspected

Failed

Dissmn (Suspect pj)

Dissmn (Alive pj) Dissmn (Failed pj)

50

Suspicion Mechanism
•  Distinguish multiple suspicions of a process
–  Per-process incarnation number
–  Inc # for pi can be incremented only by pi

•  e.g., when it receives a (Suspect, pi) message

–  Somewhat similar to DSDV

•  Higher inc# notifications over-ride lower inc#’s
•  Within an inc#: (Suspect inc #) > (Alive, inc #)
•  (Failed, inc #) overrides everything else

51

Wrap Up
•  Failures the norm, not the exception in datacenters
•  Every distributed system uses a failure detector
•  Many distributed systems use a membership service

•  Ring failure detection underlies
–  IBM SP2 and many other similar clusters/machines

•  Gossip-style failure detection underlies
–  Amazon EC2/S3 (rumored!)

Important Announcement
•  Next week Tue and Thu: We’ll have a flipped classroom! (like Khan Academy)
•  Homework before Next week

•  Please see video lectures for two topics
•  Timestamps and Ordering before Tue
•  Global Snapshots before Thu

•  When you come to class on Sep 9th (Tue) and Sep 11th (Thu) the TAs will be helping
you do exercises in class (not HW problems, but other exercise problems we will
give you)

•  We will not replay videos in class, i.e., there will be no lecturing.
•  If you don’t see the videos before class, you will flounder in class. So make sure

you see them before class.
•  Exercises may count for grades.
•  Please bring a pen/pencil and paper to both classes.

