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•  Contains files and directories (folders) 
•  Higher level of abstraction  

–  Prevents users and processes from dealing with disk blocks 
and memory blocks 

File System 



•  Typical File 

File Contents 

Header         Block 0  Block 1            …         Block N-1 

File contents are in here 
•  Timestamps: creation, read, write, header 
•  File type, e.g., .c, .java 
•  Ownership, e.g., edison 
•  Access Control List: who can access this  

 file and in what mode 
•  Reference Count: Number of directories  

 containing this file 
•  May be > 1 (hard linking of files) 
•  When 0, can delete file 



•  They’re just files! 
•  With their “data” containing  

–  The meta-information about files the directory contains 
–  Pointers (on disk) to those files 

What about Directories? 



•  Uses notion of file descriptors 
–  Handle for a process to access a file 

•  Each process: Needs to open a file before reading/
writing file 

–  OS creates an internal datastructure for a file descriptor, 
returns handle 

•  filedes=open(name, mode) 
–  mode = access mode, e.g., r, w, x 

•  filedes=creat(name, mode) 
–  Create the file, return the file descriptor 

•  close(filedes) 

Unix File System: Opening and Closing Files 



•  filedes=read(filedes, buffer, num_bytes) 
–  File descriptor maintains a read-write pointer pointing to an 

offset within file 
–  read() reads num_bytes starting from that pointer (into 

buffer), and automatically advances pointer by num_bytes 

•  filedes=write(filedes, buffer, num_bytes) 
–  Writes from buffer into file at position pointer 
–  Automatically advances pointer by num_bytes 

•  pos=lseek(filedes, offset, whence) 
–  Moves read-write pointer to position offset within file 
–  whence says whether offset absolute or relative (relative to 

current pointer) 

Unix File System: Reading and Writing 



•  status=link(old_link, new_link) 
–  Creates a new link at second arg to the file at first arg 
–  Old_link and new_link are Unix-style names, e.g., “/usr/

edison/my_invention” 
–  Increments reference count of file 
–  Known as a “hard link” 

•  Vs. “Symbolic/Soft linking” which creates another file pointing to this file; 
does not change reference count 

•  status=unlink(old_link) 
–  Decrements reference count 
–  If count=0, can delete file 

•  status=stat/fstat(file_name, buffer) 
–  Get attributes (header) of file into buffer 

Unix File System: Control Operations 



•  Files are stored on a server machine 
–  client machine does RPCs to server to perform operations on 

file 

Desirable Properties from a DFS 
•  Transparency: client accesses DFS files as if it were 

accessing local (say, Unix) files 
–  Same API as local files, i.e., client code doesn’t change 
–  Need to make location, replication, etc. invisible to client 

•  Support concurrent clients 
–  Multiple client processes reading/writing the file 

concurrently 

•  Replication: for fault-tolerance 

Distributed File Systems (DFS) 



•  One-copy update semantics: when file is replicated, 
its contents, as visible to clients, are no different 
from when the file has exactly 1 replica 

•  At most once operation vs. At least once operation 
–  Choose carefully 
–  At most once, e.g., append operations cannot be repeated 
–  Idempotent operations have no side effects when repeated: 

they can use at least once semantics, e.g., read at absolute 
position in file 

Concurrent Accesses in DFS 



•  Authentication 
–  Verify that a given user is who they claim to be 

•  Authorization 
–  After a user is authenticated, verify that the file they’re trying 

to access is in fact allowed for that user 
–  Two popular flavors 
–  Access Control Lists (ACLs) = per file, list of allowed users 

and access allowed to each 
–  Capability Lists = per user, list of files allowed to access 

and type of access allowed  
•  Could split it up into capabilities, each for a different (user,file) 

Security in DFS 



•  We’ll call it our “Vanilla DFS” 
•  Vanilla DFS runs on a server, and at multiple clients 
•  Vanilla DFS consists of three types of processes 

–  Flat file service: at server 
–  Directory service: at server, talks to (i.e., “client of”) Flat file 

service 
–  Client service: at client, talks to Directory service and Flat 

file service 

Let’s Build a DFS! 



•  Read(file_id, buffer, position, num_bytes)
–  Reads num_bytes from absolute position in file file_id 

into buffer
•  File_id is not a file descriptor, it’s a unique id of that file

–  No automatic read-write pointer!
•  Why not? Need operation to be idempotent (at least once 

semantics)

–  No file descriptors!
•  Why not? Need servers to be stateless: easier to recover after 

failures (no state to restore!)

–  In contrast, Unix file system operations are neither 
idempotent nor stateless

Vanilla DFS: Flat File Service API 



•  write(file_id, buffer, position, num_bytes)
–  Similar to read

•  create/delete(file_id)
•  get_attributes/set_attributes(file_id, buffer) 

Vanilla DFS: Flat File Service API (2) 



•  file_id = lookup(dir, file_name) 
–  file_id can then be used to access file via Flat file service 

•  add_name(dir, file_name, buffer) 
–  Increments reference count 

•  un_name(dir, file_name) 
–  Decrements reference count; if =0, can delete 

•  list=get_names(dir, pattern) 
–  Like ls –al or dir, followed by grep or find 

Vanilla DFS: Directory Service API 



•  Next: Two popular distributed file systems 
–  NFS and AFS 

Can we Build a Real DFS Already? 



•  Network File System 
•  Sun Microsystems, 1980s 
•  Used widely even today 

NFS 



NFS Architecture 

Process Process 

Virtual File System 
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•  NFS Client system 
–  Similar to our “Client service” in our Vanilla DFS 
–  Integrated with kernel (OS) 
–  Performs RPCs to NFS Server system for DFS operations 

•  NFS Server system 
–  Plays the role of both Flat file service + Directory service 

from our Vanilla DFS 
–  Allows mounting of files and directories 

•  Mount /usr/tesla/inventions into /usr/edison/my_competitors 
•  => Now, /usr/edison/my_competitors/foo refers to /usr/tesla/inventions/foo 
•  Mount: Doesn’t clone (copy) files, just point to that directory now 

NFS Client and Server Systems 



•  Allows processes to access files via file descriptors 
–  Just like local Unix files! So, local and remote files are 

indistinguishable (i.e., gives transparency)  
–  For a given file access, decides whether  to route to local file 

system or to NFS client system 

•  Names all files (local or remote) uniquely using “NFS 
file handles” 

•  Keeps a data structure for each mounted file system 
•  Keeps a data structure called v-node for all open files 

–  If local file, v-node points to local disk block (called i-
node) 

–  If remote, v-node contains address of remote NFS server 

Virtual File System Module 



•  Server caching is one of the big reasons NFS is so 
fast with reads 

–  Server Caching = Store, in memory, some of the recently-
accessed blocks (of files and directories) 

–  Most programs (written by humans) tend to have locality of 
access 

•  Blocks accessed recently will be accessed soon in the future 

•  Writes: two flavors 
–  Delayed write: write in memory, flush to disk every 30 s 

(e.g., via Unix sync operation) 
•  Fast but not consistent 

–  Write-through: Write to disk immediately before ack-ing 
client 

•  Consistent but may be slow 

Server Optimizations 



•  Client also caches recently-accessed blocks 
•  Each block in cache is tagged with 

–  Tc: the time when the cache entry was last validated. 
–  Tm: the time when the block was last modified at the server. 
–  A cache entry at time T is valid if  

(T-Tc < t) or (Tm client = Tm server). 
–  t=freshness interval 

•  Compromise between consistency and efficiency 
•  Sun Solaris: t is set adaptively between 3-30 s for files, 30-60 s 

for directories 

•  When block is written, do a delayed-write to server 

Client Caching 



•  Designed at CMU 
–  Named after Andrew Carnegie and Andrew Mellon, the “C” 

and “M” in CMU 

•  In use today in some clusters (especially University 
clusters) 

Andrew File System (AFS) 



•  Two unusual design principles: 
–  Whole file serving 

•  Not in blocks 
–  Whole file caching 

•  Permanent cache, survives reboots 

•  Based on (validated) assumptions that 
–  Most file accesses are by a single user 
–  Most files are small 
–  Even a client cache as “large” as 100MB is supportable (e.g., in 

RAM) 
–  File reads are much more often that file writes, and typically 

sequential 

Interesting Design Decisions in AFS 



•  Clients system  = Venus service 
•  Server system = Vice service 
•  Reads and writes are optimistic 

–  Done on local copy of file at client (Venus) 
–  When file closed, writes propagated to Vice 

•  When a client (Venus) opens a file, Vice: 
–  Sends it entire file 
–  Gives client a callback promise 

•  Callback promise 
–  Promise that if another client modifies then closes the file, a callback 

will be sent from Vice to Venus 
–  Callback state at Venus only binary: valid or canceled 

AFS Details 



•  Distributed File systems 
–  Widely used today 

•  Vanilla DFS 
•  NFS 
•  AFS 
•  Many other distributed file systems out there today! 

Summary 



•  MP2 due tomorrow 11.59 PM 
•  HW4 due in class this Thursday 
•  Final exam next week (more details next week) 

Announcements 


