
CS 425 / ECE 428
Distributed Systems

Fall 2014
Indranil Gupta (Indy)

Lecture 27: Distributed File Systems
All slides © IG

•  Contains files and directories (folders)
•  Higher level of abstraction

–  Prevents users and processes from dealing with disk blocks
and memory blocks

File System

•  Typical File

File Contents

Header Block 0 Block 1 … Block N-1

File contents are in here
•  Timestamps: creation, read, write, header
•  File type, e.g., .c, .java
•  Ownership, e.g., edison
•  Access Control List: who can access this

 file and in what mode
•  Reference Count: Number of directories

 containing this file
•  May be > 1 (hard linking of files)
•  When 0, can delete file

•  They’re just files!
•  With their “data” containing

–  The meta-information about files the directory contains
–  Pointers (on disk) to those files

What about Directories?

•  Uses notion of file descriptors
–  Handle for a process to access a file

•  Each process: Needs to open a file before reading/
writing file

–  OS creates an internal datastructure for a file descriptor,
returns handle

•  filedes=open(name, mode)
–  mode = access mode, e.g., r, w, x

•  filedes=creat(name, mode)
–  Create the file, return the file descriptor

•  close(filedes)

Unix File System: Opening and Closing Files

•  filedes=read(filedes, buffer, num_bytes)
–  File descriptor maintains a read-write pointer pointing to an

offset within file
–  read() reads num_bytes starting from that pointer (into

buffer), and automatically advances pointer by num_bytes

•  filedes=write(filedes, buffer, num_bytes)
–  Writes from buffer into file at position pointer
–  Automatically advances pointer by num_bytes

•  pos=lseek(filedes, offset, whence)
–  Moves read-write pointer to position offset within file
–  whence says whether offset absolute or relative (relative to

current pointer)

Unix File System: Reading and Writing

•  status=link(old_link, new_link)
–  Creates a new link at second arg to the file at first arg
–  Old_link and new_link are Unix-style names, e.g., “/usr/

edison/my_invention”
–  Increments reference count of file
–  Known as a “hard link”

•  Vs. “Symbolic/Soft linking” which creates another file pointing to this file;
does not change reference count

•  status=unlink(old_link)
–  Decrements reference count
–  If count=0, can delete file

•  status=stat/fstat(file_name, buffer)
–  Get attributes (header) of file into buffer

Unix File System: Control Operations

•  Files are stored on a server machine
–  client machine does RPCs to server to perform operations on

file

Desirable Properties from a DFS
•  Transparency: client accesses DFS files as if it were

accessing local (say, Unix) files
–  Same API as local files, i.e., client code doesn’t change
–  Need to make location, replication, etc. invisible to client

•  Support concurrent clients
–  Multiple client processes reading/writing the file

concurrently

•  Replication: for fault-tolerance

Distributed File Systems (DFS)

•  One-copy update semantics: when file is replicated,
its contents, as visible to clients, are no different
from when the file has exactly 1 replica

•  At most once operation vs. At least once operation
–  Choose carefully
–  At most once, e.g., append operations cannot be repeated
–  Idempotent operations have no side effects when repeated:

they can use at least once semantics, e.g., read at absolute
position in file

Concurrent Accesses in DFS

•  Authentication
–  Verify that a given user is who they claim to be

•  Authorization
–  After a user is authenticated, verify that the file they’re trying

to access is in fact allowed for that user
–  Two popular flavors
–  Access Control Lists (ACLs) = per file, list of allowed users

and access allowed to each
–  Capability Lists = per user, list of files allowed to access

and type of access allowed
•  Could split it up into capabilities, each for a different (user,file)

Security in DFS

•  We’ll call it our “Vanilla DFS”
•  Vanilla DFS runs on a server, and at multiple clients
•  Vanilla DFS consists of three types of processes

–  Flat file service: at server
–  Directory service: at server, talks to (i.e., “client of”) Flat file

service
–  Client service: at client, talks to Directory service and Flat

file service

Let’s Build a DFS!

•  Read(file_id, buffer, position, num_bytes)
–  Reads num_bytes from absolute position in file file_id

into buffer
•  File_id is not a file descriptor, it’s a unique id of that file

–  No automatic read-write pointer!
•  Why not? Need operation to be idempotent (at least once

semantics)

–  No file descriptors!
•  Why not? Need servers to be stateless: easier to recover after

failures (no state to restore!)

–  In contrast, Unix file system operations are neither
idempotent nor stateless

Vanilla DFS: Flat File Service API

•  write(file_id, buffer, position, num_bytes)
–  Similar to read

•  create/delete(file_id)
•  get_attributes/set_attributes(file_id, buffer)

Vanilla DFS: Flat File Service API (2)

•  file_id = lookup(dir, file_name)
–  file_id can then be used to access file via Flat file service

•  add_name(dir, file_name, buffer)
–  Increments reference count

•  un_name(dir, file_name)
–  Decrements reference count; if =0, can delete

•  list=get_names(dir, pattern)
–  Like ls –al or dir, followed by grep or find

Vanilla DFS: Directory Service API

•  Next: Two popular distributed file systems
–  NFS and AFS

Can we Build a Real DFS Already?

•  Network File System
•  Sun Microsystems, 1980s
•  Used widely even today

NFS

NFS Architecture

Process Process

Virtual File System

Unix
File system

NFS
Client system

Local Disk

Client

Virtual File System

Unix
File system

NFS
Server system

Local Disk

Server

•  NFS Client system
–  Similar to our “Client service” in our Vanilla DFS
–  Integrated with kernel (OS)
–  Performs RPCs to NFS Server system for DFS operations

•  NFS Server system
–  Plays the role of both Flat file service + Directory service

from our Vanilla DFS
–  Allows mounting of files and directories

•  Mount /usr/tesla/inventions into /usr/edison/my_competitors
•  => Now, /usr/edison/my_competitors/foo refers to /usr/tesla/inventions/foo
•  Mount: Doesn’t clone (copy) files, just point to that directory now

NFS Client and Server Systems

•  Allows processes to access files via file descriptors
–  Just like local Unix files! So, local and remote files are

indistinguishable (i.e., gives transparency)
–  For a given file access, decides whether to route to local file

system or to NFS client system

•  Names all files (local or remote) uniquely using “NFS
file handles”

•  Keeps a data structure for each mounted file system
•  Keeps a data structure called v-node for all open files

–  If local file, v-node points to local disk block (called i-
node)

–  If remote, v-node contains address of remote NFS server

Virtual File System Module

•  Server caching is one of the big reasons NFS is so
fast with reads

–  Server Caching = Store, in memory, some of the recently-
accessed blocks (of files and directories)

–  Most programs (written by humans) tend to have locality of
access

•  Blocks accessed recently will be accessed soon in the future

•  Writes: two flavors
–  Delayed write: write in memory, flush to disk every 30 s

(e.g., via Unix sync operation)
•  Fast but not consistent

–  Write-through: Write to disk immediately before ack-ing
client

•  Consistent but may be slow

Server Optimizations

•  Client also caches recently-accessed blocks
•  Each block in cache is tagged with

–  Tc: the time when the cache entry was last validated.
–  Tm: the time when the block was last modified at the server.
–  A cache entry at time T is valid if

(T-Tc < t) or (Tm client = Tm server).
–  t=freshness interval

•  Compromise between consistency and efficiency
•  Sun Solaris: t is set adaptively between 3-30 s for files, 30-60 s

for directories

•  When block is written, do a delayed-write to server

Client Caching

•  Designed at CMU
–  Named after Andrew Carnegie and Andrew Mellon, the “C”

and “M” in CMU

•  In use today in some clusters (especially University
clusters)

Andrew File System (AFS)

•  Two unusual design principles:
–  Whole file serving

•  Not in blocks
–  Whole file caching

•  Permanent cache, survives reboots

•  Based on (validated) assumptions that
–  Most file accesses are by a single user
–  Most files are small
–  Even a client cache as “large” as 100MB is supportable (e.g., in

RAM)
–  File reads are much more often that file writes, and typically

sequential

Interesting Design Decisions in AFS

•  Clients system = Venus service
•  Server system = Vice service
•  Reads and writes are optimistic

–  Done on local copy of file at client (Venus)
–  When file closed, writes propagated to Vice

•  When a client (Venus) opens a file, Vice:
–  Sends it entire file
–  Gives client a callback promise

•  Callback promise
–  Promise that if another client modifies then closes the file, a callback

will be sent from Vice to Venus
–  Callback state at Venus only binary: valid or canceled

AFS Details

•  Distributed File systems
–  Widely used today

•  Vanilla DFS
•  NFS
•  AFS
•  Many other distributed file systems out there today!

Summary

•  MP2 due tomorrow 11.59 PM
•  HW4 due in class this Thursday
•  Final exam next week (more details next week)

Announcements

