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Reading: Relevant sections from Ghosh’ s textbook
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Motivation |

* As the number of computing elements increase in distributed
systems failures become more common

« We desire that fault-tolerance should be automatic, without
external intervention
« Two kinds of fault tolerance

— masking: application layer does not see faults, e.g., redundancy and
replication

— non-masking: system deviates, deviation is detected and then
corrected: e.g., roll back and recovery

- Self-stabilization is a general technique for non-masking
distributed systems

« We deal only with transient failures which corrupt data, but not
crash-stop failures
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Self-stabilization |

 Technique for spontaneous healing

« Guarantees eventual safety following
failures

E. Dijkstra

Feasibility demonstrated by Dijkstra
(CACM '74)
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Self-stabilizing systems |

 Recover from any initial configuration to a legitimate
configuration in a bounded number of steps, as long as
the processes are not further corrupted

« Assumption:

Failures affect the state (and data) but not the program
code
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Self-stabilizing systems |

* The ability to spontaneously recover from any
initial state implies that no initialization is ever
required.

 Such systems can be deployed ad hoc, and are
guaranteed to function properly within
bounded number of steps

« Guarantees-fault tolerance when the mean time
between failures (MTBF) >> mean time to
recovery (MTTR)

| Lecture 26-5 i



Self-stabilizing systems |

. Self-stabilizing systems exhibit
non-masking fault-tolerance

fault

. They satisfy the following two
criteria

— Convergence

convergence
- Closure

closure
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Example 1:
Stabilizing mutual exclusion in
unidirectional ring

Consider a unidirectional ring of processes.
Counter-clockwise ring.

One special process (yellow above) is process with id=0
Legal configuration = exactly one token in the ring (Safety)
Desired “normal” behavior: single token circulates in the ring
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Dijkstra’s stabilizing mutual
exclusion

N processes: 0, 1, ..., N-1
state of process | is x[j]] €{0, 1, 2, K-1}, where K> N

O—O—OC—0C0—0

p,  ifx0]= x[N-1] then x[0] := [0] + 1
p; j> 0 if x[j] # x[j -1] then x[] := x[j-1]
Wrap-around after K-1
TOKEN is @ a process p = “if " condition is true @ process p

Legal configuration: only one process has token
Can start the system from an arbitrary initial configuration
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Example execution |
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p,  ifx[0] = X[N-1] then x[0] := X[0] + 1
p; j> 0 if [ # X -1] then x[j] := x[j-1]
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Stabilizing execution |
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p,  ifx[0] = X[N-1] then x[0] := X[0] + 1
p; j> 0 if [ # X -1] then x[j] := x[j-1]
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What Happens |

fault

» Legal configuration = a
configuration with a single token

* Perturbations or failures take the
system to configurations with
multiple tokens

— e.g. mutual exclusion property may be
violated

* Within finite number of steps, if no
further failures occur, then the
system returns to a legal closure
configuration

convergence
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Why does it work ? 0) 0)
e
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1. At any configuration, at least one process can
make a move (has token)

2. Set of legal configurations is closed under all
moves

3. Total number of possible moves from
(successive configurations) never increases

4. Any illegal configuration C converges to a legal
configuration in a finite number of moves
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Why does it work ? | 0) 0)
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1. At any configuration, at least one process can
make a move (has token), i.e., if condition is
false at all processes

—  Proof by contradiction: suppose no one can make a move
—  Then py,...,py., c@annot make a move

—  Then x[N-1] = x[N-2] = ... x[0]

—  But this means that p, can make a move => contradiction

p; J >0 if x[]] # x[j -1] then x[]] := x[j-1] | Lecture 26-13 i




Why does it work ? |
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move (has token)

only p, can make a move
— If only pi (i#¥0) can make a move
» for all j < i, x[j] = x[i-1]
» for all k 2 i, x[k] = x[i], and
» x[i-1] # x[i]
» x[0] # x[N-1]
in this case, after p; ‘s move only p;,, can move

1. At any configuration, at least one process can make a

2. Set of legal configurations is closed under all moves
— If only p, can make a move, then for all i,j: x[i] = x[j]. After p,” s move,

p; J >0 if x[]] # x[j -1] then x[]] := x[j-1]
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Why does it work ? 0) 0)
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1. At any configuration, at least one process can
make a move (has token)

2. Set of legal configurations is closed under all
moves

3. Total number of possible moves from
(successive configurations) never increases
— any move by p; either enables a move for p,,, or none at all

p; J >0 if x[]] # x[j -1] then x[]] := x[j-1] | Lecture 26-15 i




Why does it work ? | 0) 0)
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1. At any configuration, at least one process can make a move (has token)
2. Set of legal configurations is closed under all moves

3. Total number of possible moves from (successive configurations) never
increases

4. Any illegal configuration C converges to a legal configuration in
a finite number of moves

— There must be a value, say v, that does not appear in C (since K> N)

- Except for p,, none of the processes create new values (since they only copy
values)

- Thus p, takes infinitely many steps, and since it only self-increments, it
eventually sets x[0] = v (within K steps)

- Soon after, all other processes copy value v and a legal configuration is
reached in N-1 steps

p; J >0 if x[]] # x[j -1] then x[]] := x[j-1] | Lecture 26-16 i




Putting it All Together |

fault

» Legal configuration = a
configuration with a single token

* Perturbations or failures take the
system to configurations with
multiple tokens

— e.g. mutual exclusion property may be
violated

* Within finite number of steps, if no
further failures occur, then the
system returns to a legal closure
configuration

convergence
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Summary |

 Many more self-stabilizing algorithms
— Self-stabilizing distributed spanning tree
— Self-stabilizing distributed graph coloring
— Not covered in the course — look them up on the web!
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Reminders |

MP2, HW4 due soon after break

— | hope you’ve already started. If not, start now! Don’t start after
break; it’s too late then.

Only 3 lectures left!

Have a good Thanksgiving break!

(No lectures or office hours next week)
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