
CS 425 / ECE 428
Distributed Systems

Fall 2014
Indranil Gupta (Indy)

Lecture 25: Distributed Shared Memory
All slides © IG

•  Message passing network

So Far …

Process
Process

Process

Process send message

receive message

•  Processes could share memory pages instead?
•  Makes it convenient to write programs
•  Reuse programs

But what if …

Process
Process

Process

Process write to page 5

read page 5

Page 0 Page 1 Page 2 … Page N-1

•  Distributed Shared Memory = processes virtually
share pages

•  How do you implement DSM over a message-
passing network?

Distributed Shared Memory

Process
Process

Process

Process write to page 5

read page 5

1.  Message-passing can be implemented over DSM!
–  Use a common page as buffer to read/write messages

2.  DSM can be implemented over a message-passing
network!

In fact …

Process
Process

Process

Process write to page 5

read page 5

•  Cache maintained at each process
–  Cache stores pages accessed recently by that process

•  Read/write first goes to cache

DSM over Message-Passing Network

Process

Cache

Process

Cache

Process

Cache Process

Cache

•  Pages can be mapped in local memory
•  When page is present in memory, page hit
•  Otherwise, page fault (kernel trap) occurs

–  Kernel trap handler: invokes the DSM software
–  May contact other processes in DSM group, via multicast

DSM over Message-Passing Network (2)

•  Owner = Process with latest version of page
•  Each page is in either R or W state

•  When page in R state, owner has an R copy, but
other processes may also have R copies

–  but no W copies exist

•  When page is in W state, only owner has a copy

DSM: Invalidate Protocol

•  Process 1 is owner (O) and has page in R state
•  Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 1

Process 1

page (R)(O)

Process 2

Process 3

 Process 4

•  Process 1 is owner (O) and has page in W state
•  Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 2

Process 1

page (W)(O)

Process 2

Process 3

 Process 4

•  Process 1 is owner (O) and has page in R state
•  Other processes also have page in R state
•  Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 3

Process 1

page (R)(O)

Process 2

Process 3

page (R) Process 4

page (R)

•  Process 1 has page in R state
•  Other processes also have page in R state, and someone else is owner
•  Read from cache. No messages sent.

Process 1 Attempting a Read: Scenario 4

Process 1

page (R)

Process 2

Process 3

page (R)
Process 4

page (R) (O)

•  Process 1 does not have page
•  Other process(es) has/have page in (R) state
•  Ask for a copy of page. Use multicast.
•  Mark it as R
•  Do Read

Process 1 Attempting a Read: Scenario 5

Process 1

Process 2

Process 3

page (R)
Process 4

page (R) (O)

•  Process 1 does not have page
•  Other process(es) has/have page in (R) state
•  Ask for a copy of page. Use multicast.
•  Mark it as R
•  Do Read

End State: Read Scenario 5

Process 1

page (R)

Process 2

Process 3

page (R)
Process 4

page (R) (O)

•  Process 1 does not have page
•  Another process has page in (W) state
•  Ask other process to degrade its copy to (R). Locate process via multicast
•  Get page; mark it as R
•  Do Read

Process 1 Attempting a Read: Scenario 6

Process 1

Process 2

Process 3

Process 4

page (W) (O)

End State: Read Scenario 6

Process 1

page (R)

Process 2

Process 3

Process 4

page (R) (O)

•  Process 1 does not have page
•  Another process has page in (W) state
•  Ask other process to degrade its copy to (R). Locate process via multicast
•  Get page; mark it as R
•  Do Read

•  Process 1 is owner (O) and has page in W state
•  Write to cache. No messages sent.

Process 1 Attempting a Write: Scenario 1

Process 1

page (W)(O)

Process 2

Process 3

 Process 4

•  Process 1 is owner (O) has page in R state
•  Other processes may also have page in R state
•  Ask other processes to invalidate their copies of page. Use multicast.
•  Mark page as (W).
•  Do write.

Process 1 Attempting a Write: Scenario 2

Process 1

page (R)(O)

Process 2

Process 3

page (R) Process 4

page (R)

•  Process 1 is owner (O) has page in R state
•  Other processes may also have page in R state
•  Ask other processes to invalidate their copies of page. Use multicast.
•  Mark page as (W).
•  Do write.

End State: Write Scenario 2

Process 1

page (W)(O)

Process 2

Process 3

page (R) Process 4

page (R)

•  Process 1 has page in R state
•  Other processes may also have page in R state, and someone else is owner
•  Ask other processes to invalidate their copies of page. Use multicast.
•  Mark page as (W), become owner
•  Do write

Process 1 Attempting a Write: Scenario 3

Process 1

page (R)

Process 2

Process 3

page (R) Process 4

page (R) (O)

•  Process 1 has page in R state
•  Other processes may also have page in R state, and someone else is owner
•  Ask other processes to invalidate their copies of page. Use multicast.
•  Mark page as (W), become owner
•  Do write

End State: Write Scenario 3

Process 1

page (W) (O)

Process 2

Process 3

page (R) Process 4

page (R) (O)

•  Process 1 does not have page
•  Other process(es) has/have page in (R) or (W) state
•  Ask other processes to invalidate their copies of the page. Use multicast.
•  Fetch all copies; use the latest copy; mark it as (W); become owner
•  Do Write

Process 1 Attempting a Write: Scenario 4

Process 1

Process 2

Process 3

page (R)
Process 4

page (R) (O)

•  Process 1 does not have page
•  Other process(es) has/have page in (R) or (W) state
•  Ask other processes to invalidate their copies of the page. Use multicast.
•  Fetch all copies; use the latest copy; mark it as (W); become owner
•  Do Write

End State: Write Scenario 4

Process 1

page (W) (O)

Process 2

Process 3

page (R)
Process 4

page (R) (O)

•  That was the invalidate approach
•  If two processes write same page concurrently

–  Flip-flopping behavior where one process invalidates the
other

–  Lots of network transfer
–  Can happen when unrelated variables fall on same page
–  Called false sharing

•  Need to set page size to capture a process’ locality of
interest

•  If page size much larger, then have false sharing
•  If page size much smaller, then too many page

transfers => also inefficient

Invalidate Downsides

•  Instead: could use Update approach
–  Multiple processes allowed to have page in W state
–  On a write to a page, multicast newly written value (or part of page) to

all other holders of that page
–  Other processes can then continue reading and writing page

•  Update preferable over Invalidate
–  When lots of sharing among processes
–  Writes are to small variables
–  Page sizes large

•  Generally though, Invalidate better and preferred option

An Alternative Approach: Update

•  Whenever multiple processes share data, consistency
comes into picture

•  DSM systems can be implemented with:
–  Linearizability
–  Sequential Consistency
–  Causal Consistency
–  Pipelined RAM (FIFO) Consistency
–  Eventual Consistency
–  (Also other models like Release consistency)
–  These should be familiar to you from the course!

•  As one goes down this order, speed increases while
consistency gets weaker

Consistency

•  DSM was very popular over a decade ago
•  But may be making a comeback now

–  Faster networks like Infiniband + SSDs => Remote
Direct Memory Access (RDMA) becoming popular

–  Will this grow? Or stay the same as it is right now?
–  Time will tell!

Is it Alive?

•  DSM = Distributed Shared Memory
–  Processes share pages, rather than sending/receiving

messages
–  Useful abstraction: allows processes to use same code as if

they were all running over the same OS (multiprocessor OS)

•  DSM can be implemented over a message-passing
interface

•  Invalidate vs. Update protocols

Summary

