
CS 425 / ECE 428
Distributed Systems

Fall 2014
Indranil Gupta (Indy)
Lecture 24B: Security

All slides © IG

•  Leakage
–  Unauthorized access to service or data
–  E.g., Someone knows your bank balance

•  Tampering
–  Unauthorized modification of service or data
–  E.g., Someone modifies your bank balance

•  Vandalism
–  Interference with normal service, without

direct gain to attacker
–  E.g., Denial of Service attacks

Security Threats

•  Eavesdropping
–  Attacker taps into network

•  Masquerading
–  Attacker pretends to be someone else, i.e.,

identity theft

•  Message tampering
–  Attacker modifies messages

•  Replay attack
–  Attacker replays old messages

•  Denial of service: bombard a port

Common Attacks

•  Confidentiality
–  Protection against disclosure to unauthorized

individuals
–  Addresses Leakage threat

•  Integrity
–  Protection against unauthorized alteration or

corruption
–  Addresses Tampering threat

•  Availability
–  Service/data is always readable/writable
–  Addresses Vandalism threat

Addressing the Challenges: CIA Properties

•  Many scientists (e.g., Hansen) have argued for a
separation of policy vs. mechanism

•  A security policy indicates what a secure system
accomplishes

•  A security mechanism indicates how these goals
are accomplished

•  E.g.,
–  Policy: in a file system, only authorized individuals

allowed to access files (i.e., CIA properties)
–  Mechanism: Encryption, capabilities, etc.

Policies vs. Mechanisms

•  Authentication
–  Is a user (communicating over the network)

claiming to be Alice, really Alice?

•  Authorization
–  Yes, the user is Alice, but is she allowed to

perform her requested operation on this
object?

•  Auditing
–  How did Eve manage to attack the system and

breach defenses? Usually done by
continuously logging all operations.

Mechanisms: Golden A’s

•  Don’t know how powerful attacker is
•  When designing a security protocol need to
1. Specify Attacker Model: Capabilities of attacker
 (Attacker model should be tied to reality)
2. Design security mechanisms to satisfy policy under
the attacker model
3. Prove that mechanisms satisfy policy under
attacker model
4. Measure effect on overall performance (e.g.,
throughput) in the common case, i.e., no attacks

Designing Secure Systems

•  Basic Cryptography

Next

•  Principals: processes that carry out
actions on behalf of users
–  Alice
–  Bob
–  Carol
–  Dave
–  Eve (typically evil)
–  Mallory (typically malicious)
–  Sara (typically server)

Basic Security Terminology

•  Key = sequence of bytes assigned to a
user
–  Can be used to “lock” a message, and only this key

can be used to “unlock” that locked message

Keys

•  Message (sequence of bytes) + Key à
 (Encryption) à
 Encoded message (sequence of bytes)

•  Encoded Message (sequence of bytes) + Key à
 (Decryption) à
 Original message (sequence of bytes)

•  No one can decode an encoded message without
the key

Encryption

I. Symmetric Key systems:
–  KA = Alice’s key; secret to Alice
–  KAB = Key shared only by Alice and Bob
–  Same key (KAB) used to both encrypt and decrypt a

message

•  E.g., DES (Data Encryption Standard): 56 b key
operates on 64 b blocks from the message

Two Cryptography Systems

II. Public-Private Key systems:
–  KApriv = Alice’s private key; known only to Alice
–  KApub = Alice’s public key; known to everyone
–  Anything encrypted with KApriv can be decrypted only with

KApub
–  Anything encrypted with KApub can be decrypted only with

KApriv

•  RSA and PGP fall into these category
–  RSA = Rivest Shamir Adleman
–  PGP = Pretty Good Privacy
–  Keys are several 100s or 1000s of b long
–  Longer keys => harder for attackers to break
–  Public keys maintained via PKI (Public Key Infrastructure)

Two Cryptography Systems (2)

•  If Alice wants to send a secret message M that can
be read only by Bob

–  Alice encrypts it with Bob’s public key
–  KBpub(M)

–  Bob only one able to decrypt it

–  KBpriv(KBpub(M)) = M
–  Symmetric too, i.e., KApub(KApriv(M)) = M

Public-Private Key Cryptography

•  Shared keys reveal too much information
–  Hard to revoke permissions from principals
–  E.g., group of principals shares one key

 à want to remove one principal from group
 à need everyone in group to change key

•  Public/private keys involve costly encryption or
decryption
–  At least one of these 2 operations is costly

•  Many systems use public/private key system to
generate shared key, and use latter on messages

Shared/Symmetric vs. Public/Private

•  How to use cryptography to implement
I.  Authentication
II.  Digital Signatures
III. Digital Certificates

Next

•  Two principals verify each others’
identities

•  Two flavors
–  Direct authentication: directly between two

parties
–  Indirect authentication: uses a trusted third-

party server
•  Called authentication server
•  E.g., A Verisign server

I. Authentication

Direct Authentication Using Shared Key

Bob

Time

Alice

Message
Instruction or Step

A

RB = Nonce
= random number

KAB(RB) RA = Nonce
= random number

Bob calculates KAB (RB)"
and matches with reply."
Alice is the only one "
who could have "
replied correctly."

KAB(RA)

Alice knows Bob is Bob"

(has KAB)

(has KAB)

Why Not Optimize Number of Messages?

Bob

Time

Alice

Message
Instruction or Step

A, RA

RB, KAB(RA)

KAB(RB)

Bob calculates KAB (RB)"
and matches with reply."
Alice is the only one "
who could have "
replied correctly."

Alice knows Bob is Bob"

Unfortunately, This Subject to Replay Attack

Bob

Time

Eve
(Malicious)

Message
Instruction or Step

A, RA

RB, KAB(RA)

KAB(RB)

Bob calculates KAB (RB)"
and matches with reply."
Bob thinks Eve is Alice."

A, RB

RB2, KAB(RB)

Eve starts 2nd session Eve finishes 1st session Eve starts 1st session

Indirect Authentication Using
Authentication Server and Shared Keys

Bob

Time

Alice

Message
Instruction or Step

A, B

KA,AS(KA,B), KB,AS(KA,B)
= A Ticket

A, KB,AS(KA,B)

AS

Alice and Bob only ones who
can decrypt portions of the ticket
and obtain KA,B

•  Just like “real” signatures
–  Authentic, Unforgeable
–  Verifiable, Non-repudiable

•  To sign a message M, Alice encrypts message with her
own private key

–  Signed message: [M, KApriv(M)]
–  Anyone can verify, using Alice’s public key, that Alice signed it

•  To make it more efficient, use a one-way hash function,
e.g., SHA-1, MD-5, etc.
•  Signed message: [M, KApriv(Hash(M))]
•  Efficient since hash is fast and small; don’t need to encrypt/

decrypt full message

II. Digital Signatures

•  Just like “real” certificates
•  Implemented using digital signatures
•  Digital Certificates have

–  Standard format
–  Transitivity property, i.e., chains of certificates
–  Tracing chain backwards must end at trusted

authority (at root)

III. Digital Certificates

1.  Certificate Type: Account
2.  Name: Alice
3.  Account number: 12345
4.  Certifying Authority: Charlie’s Bank
5.  Signature

–  KCpriv(Hash(Name+Account number))

Example: Alice’s Bank Account

Alice Charlie

1.  Certificate Type: Public Key
2.  Name: Charlie’s Bank
3.  Public Key: KCpub
4.  Certifying Authority: Banker’s

Federation
5.  Signature

–  KFpriv(Hash(Name+Public key))

Charlie’s Bank, in Turn has another
Certificate

Alice Charlie
Banker’s Fed

1.  Certificate Type: Public Key
2.  Name: Banker’s Federation
3.  Public Key: KFpub
4.  Certifying Authority: Verisign
5.  Signature

–  Kverisign priv(Hash(Name+Public key))

Banker’s Federation, Has Another
Certificate From the Root Server

Alice Charlie
Banker’s Fed

Verisign

•  Access Control Matrix
–  For every combination of (principal,object) say what

mode of access is allowed
–  May be very large (1000s of principals, millions of

objects)
–  May be sparse (most entries are “no access”)

•  Access Control Lists (ACLs) = per object, list of
allowed principals and access allowed to each

•  Capability Lists = per principal, list of files
allowed to access and type of access allowed

–  Could split it up into capabilities, each for a different
(principal,file)

IV. Authorization

•  Security Challenges Abound
–  Lots of threats and attacks

•  CIA Properties are desirable policies
•  Encryption and decryption
•  Shared key vs Public/private key systems
•  Implementing authentication, signatures,

certificates
•  Authorization

Security: Summary

