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Motivation

We design algorithms, implement and deploy
them as systems

But when you factor in the real world, unexpected
characteristics may arise

Important to understand these characteristics to
build better distributed systems for the real world

We' 11 look at three systems: Kazaa (P2P system),
AWS EC2 (Elastic Compute Cloud), Hadoop



How do you find characteristics of
these Systems 1n Real-life Settings?

Write a crawler to crawl a real working system
(e.g., p2p system), or a benchmark (e.g., Hadoop)

Collect traces tfrom the crawler/benchmark
Tabulate the results

Papers contain plenty of information on how data
was collected, the caveats, 1fs and buts of the
Interpretation, etc.

— These are important, but we will ignore them for this
lecture and concentrate on the raw data and conclusions
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Measurement, Modeling, and Analysis
of a Peer-to-Peer File-Sharing
Workload

Gummadi et al
Department of Computer Science
University of Washington

Acknowledgments: Jay Patel



What They Did

Kazaa: popular p2p file sharing system in
2003

2003 paper analyzed 200-day trace of
Kazaa traffic

Considered only requests going from U.
Washington to the outside

Developed a model of multimedia
workloads



User characteristics (1)

» Users are patient

100MB+ objects
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User characteristics (2)

» Users slow down as they age
— clients “die”

— older clients ask for less each time they use
system
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User characteristics (3)

* Client availability = time client present 1n
system

— Tracing used could only detect users when their
clients transfer data

— Thus, they only report statistics on client
activity, which 1s a lower bound on availability

— Avg session lengths are typically small
(median: 2.4 mins)

e Many transactions fail



Object characteristics (1)
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Object characteristics (2)

« Kazaa object dynamics
— Kazaa clients fetch objects at most once

— Popularity of objects 1s often short-lived

* 94% time a Kazaa client requests a given object at most once
* 99% of time a Kazaa client requests a given object at most twice

— Most popular objects tend to be recently-born
objects

— Most requests are for old objects (> 1 month)

e 72% old — 28% new for large objects
e 52% old — 48% new for small objects
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Object characteristics (3)

« Kazaa 1s not Zipf, but 1t 1s heavy-tailed

o Zipf s law: popularity of ith-most popular object is
proportional to i%, (a: Zipf coefficient)

* Web access patterns are Zipf

« Authors conclude that Kazaa is not Zipf because of
the at-most-once fetch characteristics
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Results Summary

Users are patient

Users slow down as they age

Kazaa 1s not one workload

Kazaa clients fetch objects at-most-once
Popularity of objects 1s often short-lived
Kazaa 1s not Zipf
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An Evaluation of Amazon’s Grid
Computing Services: EC2, §3,
and SOS

Simson L. Garfinkel
SEAS, Harvard University
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What they Did

 Did bandwidth measurements

— From various sites to S3 (Simple Storage
Service)

— Between S3, EC2 (Elastic Compute Cloud)
and SQS (Simple Queuing Service)
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Read Read Read | Write Write  Write
Host Location N Avg top 1%  Sidev Avg top 1%  Sidev
Netherlands Netherlands 1,572 212 294 34 382 493 142
Harvard Cambridge, MA 914 412 796 121 620 844 95
ISP PIT Pittsburgh, PA 852 530 1,005 183 | 1,546 2,048 404
MIT Cambridge, MA 864 651 1,033 231 | 2,200 2,741 464
EC2 Amazon 5,483 799 1,314 320 | 5,279 10,229 2,209

Units are in bytes per second

Table 2: Measurements of S3 read and write performance in KBytes/sec from different locations on the
Internet, between 2007-03-29 and 2007-05-03.

CDF of read throughput, 2007-03-22 through 2007-04-08

1 O | { ! { L [
- | BERE e RS- B
Y A U S e R R S S ]
g 0.8 . ,/ ; //
e
BO.6F i L T
O . o7 ——
© 0.4F-- i I N L
.-_t" . : ' - A Harvard (n=258)
K - ’ — — ISP PIT (n=668)
02k 7, AT AR — — MIT (n=244) iy
e EC2 (n=2637)
[ {
(@] O - - -]
© o0} o o <t
— — —
KBytes/sec

Figure 9: Cumulative Distribution Function (CDF) plots for IMB GET transactions from four locations on the Internet
and from EC2.

Effective Bandwidth varies heavily based on (network) geography!



100 MB Get Ops from EC2 to S3
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Throughput is relatively stable, except when internal

network was reconfigured. g



CDF of read throughput, 2007-03-22 through 2007-04-08
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Read and Write throughputs: larger block size 1s Better -
(but beyond some block size, it makes little difference).
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Figure 7: Scatter plots of bandwidth successive S3 GET requests for I Byte (left) and 100 Megabyte (right) transac-
tions. The X axis indicates the speed of the first request, while the Y axis indicates the speed of the second.

Concurrency: Consecutive requests receive performance that are

highly correlated, especially for large requests .



Histogram 1B GET observed throughput (2928 samples)
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Figure 5: Histogram of 1 byte GET throughput, March
20 through April 7.
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Figure 6: Histogram of 100Mbyte GET/ throughput,
March 20 through April 7.

QoS received by requests fall into multiple “classes”
- 100 MB xfers fall into 2 classes.
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Results Summary

1. Effective Bandwidth varies heavily based on
geography!

2. Throughput is relatively stable, except when
internal network was reconﬁgured

3. Read and Write throughputs: larger requests are
better, but throughput plateaus with file size
— Decreases overhead

4. Consecutive requests receive performance that
are highly correlated

5. QoS received by requests fall into multiple
“classes”, but need to give clients more control
(e.g., via SLAs = Service Level Agreements)
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What Do Real-Life Hadoop
Workloads Look Like?
(Cloudera)

(Slide Acknowledgments: Brian Cho)
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What They Did

* Hadoop workloads from 5 Cloudera
customers

— Diverse industries:; “in e-commerce,
telecommunications, media, and retail”

— 2011

* Hadoop workloads from Facebook

— 2009, 2010 across same cluster
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The Workloads

TB/
Day

Jobs/
Day

GB/
Job

Trace Machines Length Date Jobs Bytes
moved

CC-a <100 1 month 2011 5759 80 TB
CC-b 300 9 days 2011 22974 600 TB
CC-c 700 1 month 2011 21030 18 PB
cc-d 400-500 2+ months 2011 13283 8 PB
CC-e 100 9 days 2011 10790 590 TB
FB-2009 600 6 months 2009 1129193 9.4 PB
FB-2010 3000 1.5 months 2010 1169184 1.5 EB
Total >5000 ~ 1 year - 2372213 1.6 EB

33333

190

2550

700

220

1200

6270
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23



Data access patterns (1/2)

* Skew in access * 90% of jobs access files

frequency across of less than a few GBs;
(HDEFS) ﬁle.s such files account for
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Figure 3: Access patterns vs. input file size. Showing
Figure 2. Log-log file access frequency vs. rank. Show- cummulative fraction of jobs with input files of a cez in
size (top) and cummulative fraction of all stored tes

ing Zipf distribution of same shape (slope) for all work-
g p p ( p ) from input files of a certain size (bottom).

loads.



Data access patterns (2/2)

» Temporal Locality in data accesses

70%, < 10mins

if.hﬂ- ===CC-b

o
26 o —occe
88 04 === CC-d
w02 - CC-e
0 - : ; [ FB-2010
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Fraction of re-
access

p)
g; ’5 CC-e
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Output-input re-access interval

Figure 5: Data re-accesses intervals. Showing interval
between when an input file is re-read (top), and when an
output is re-used as the input for another job (bottom).

Can you make Hadoop/HDFS better,
now that you know these
characteristics?

Compare

¥ jobs whose input
re-access pre-
existing output

M jobs whose input
re-access pre-
existing input

Fraction of jobs

FB-2010 CC-b - e

Figure 6: Fraction of jobs that reads pre-existing input
path. Note that output path information is missing from
FB-2010.
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Burstiness
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Figure 8: Workload burstiness. Showing cummulative
distribution of task-time (sum of map time and reduce
time) per hour. To allow comparison between workloads,
all values have been normalized by the median task-time
per hour for each workload. For comparison, we also
show burstiness for artificial sine submit patterns, scaled

with min-max range the same as mean (sine + 2) and
10% of mean (sine + 20).

* Plotted

— Sum of task-time (map
+ reduce) over an hour
interval

— n-th percentile /
median

 Facebook

— From 2009 to 2010,
peak-to-median ratio
dropped from 31:1 to
9:1

— Claim: consolidation

decreases burstiness y



High-level Processing
Frameworks
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Figure 10: The first word of job names for each work-
load, weighted by the number of jobs beginning with each
word (top), total I/O in bytes (middle), and map/reduce
task-time (bottom). For example, 44% of jobs in the
FB-2009 workload have a name beginning with “ad”, a
further 12% begin with “insert”; 27% of all I/O and
34% of total task-time comes from jobs with names that
begin with “from” (middle and bottom). The FB-2010
trace did not contain job names.



Classification by multi-dimensional clustering

| # Jobs | Input Shuffle Output Duration Map time Reduce time | Label
CC-e 10243 | 8.1 MB 0 970 KB 18 sec 15 0 | Small jobs
452 166 GB 180 GB 118 GB 31 min 35,606 38,194 | Transform, large
68 | 543 GB 502 GB 166 GB 2 hrs 115,077 108,745 | Transform, very large
20 3.0 TB 0 200 B 5 min 137,077 0 | Map only summary
7 6.7 TB 2.3 GB 6.7 TB 3 hrs 47 min 335,807 0 | Map only transform
FB-2009 1081918 21 KB 0 871 KB 32 s 20 0 Small jobs
37038 | 381 KB 0 1.9 GB 21 min 6,079 0 | Load data, fast
2070 10 KB 0 4.2 GB 1 hr 50 min 26,321 0 | Load data, slow
602 | 405 KB 0 447 GB 1 hr 10 min 66,657 0 | Load data, large
180 | 446 KB 0 1.1 TB 5 hrs 5 min 125,662 0 | Load data, huge
6035 | 230 GB 8.8 GB 491 MB 15 min 104,338 66,760 | Aggregate, fast
379 1.9 TB 502 MB 2.6 GB 30 min 348,942 76,736 | Aggregate and expand
159 | 418 GB 2.5 TB 45 GB 1 hr 25 min 1,076,089 974,395 | Expand and aggregate
793 | 255 GB 788 GB 1.6 GB 35 min 384,562 338,050 | Data transform
19 7.6 TB 51 GB 104 KB 55 min 4,843,452 853,911 | Data summary
FB-2010 | 1145663 | 6.9 MB 600 B 60 KB 1 min 48 34 | Small jobs
7911 50 GB 0 61 GB 8 hrs 60,664 0 | Map only transform, 8 hrs
779 3.6 TB 0 4.4 TB 45 min 3,081,710 0 | Map only transform, 45 min
670 2.1 TB 0 2.7 GB 1 hr 20 min 9,457,592 0 | Map only aggregate
104 35 GB 0 3.5 GB 3 days 198.436 0_| Map onlv transform. 3 davs
11491 1.5 TB 30 GB 2.2 GB 30 min 1,112,765 387,191 | Aggregate
1876 | 711 GB 2.6 TB 860 GB 2 hrs 1,618,792 2,056,439 | Transform, 2 hrs
454 9.0 TB 1.5 TB 1.2 TB 1 hr 1,795,682 818,344 | Aggregate and transform
169 2.7 TB 12 TB 260 GB 2 hrs 7 min 2,862,726 3,091,678 | Expand and aggregate
67 | 630 GB 1.2 TB 140 GB 18 hrs 1,545,220 18,144,174 | Transform, 18 hrs
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Results Summary

Workloads different across industries
Y et commonalities

— Zipf distribution for access file access frequency

— Slope same across all industries

90% of all jobs access small files, while the

other 10% account for 84% of the file accesses

— Parallels p2p systems (mp3-mpeg split)
A few frameworks popular for each cluster

Lots of small jobs

29



Summary

We design algorithms, implement and deploy them

But when you factor in the real world, unexpected
characteristics may arise

Important to understand these characteristics to build better
distributed systems for the real world
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Optional Slides - Understanding
Availability (P2P Systems)

R. Bhagwan, S. Savage, G. Voelker
University of California, San Diego

31



What They Did

* Measurement study of peer-to-peer (P2P) file
sharing application
— Overnet (January 2003)

— Based on Kademlia, a DHT based on xor routing metric
* Each node uses a random self-generated ID
e The ID remains constant (unlike IP address)
« Used to collect availability traces

— Closed-source
* Analyze collected data to analyze availability

« Availability = % of time a node 1s online
(node=user, or machine)
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What They Did

Crawler:

— Takes a snapshot of all the active hosts by repeatedly requesting 50
randomly generated IDs.

— The requests lead to discovery of some hosts (through routing
requests), which are sent the same 50 IDs, and the process is
repeated.

— Run once every 4 hours to minimize impact

Prober:

— Probe the list of available IDs to check for availability
* By sending a request to ID 7; request succeeds only if / replies
* Does not use TCP, avoids problems with NAT and DHCP
— Used on only randomly selected 2400 hosts from the initial list

— Run every 20 minutes
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Scale of Data

Ran for 15 days from January 14 to January
28 (with problems on January 21) 2003

Each pass of crawler yielded 40,000 hosts.

In a single day (6 crawls) yielded between
70,000 and 90,000 unique hosts.

1468 of the 2400 randomly selected hosts
probes responded at least once
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Multiple IP Hosts
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Figure 1: Percentage of hosts that have more than one IP
address across different periods of time.
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Availability
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Figure 2: Host availability derived using unique host ID
probes vs. IP address probes.
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Results Summary

Overall availability 1s low
Diurnal patterns existing 1n availability

. Availabilities are uncorrelated across

nodes
. High Churn exists

37



