# CS 425 / ECE 428 Distributed Systems Fall 2014

Indranil Gupta (Indy)

Measurement Studies

Lecture 23

Reading: See links on website

#### Motivation

- We design algorithms, implement and deploy them as systems
- But when you factor in the real world, unexpected characteristics may arise
- Important to understand these characteristics to build better distributed systems for the real world
- We'll look at three systems: Kazaa (P2P system), AWS EC2 (Elastic Compute Cloud), Hadoop

## How do you find characteristics of these Systems in Real-life Settings?

- Write a crawler to crawl a real working system (e.g., p2p system), or a benchmark (e.g., Hadoop)
- Collect *traces* from the crawler/benchmark
- Tabulate the results
- Papers contain plenty of information on how data was collected, the caveats, ifs and buts of the interpretation, etc.
  - These are important, but we will ignore them for this lecture and concentrate on the raw data and conclusions

# Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload

Gummadi et al
Department of Computer Science
University of Washington

#### What They Did

- Kazaa: popular p2p file sharing system in 2003
- 2003 paper analyzed 200-day trace of Kazaa traffic
- Considered only requests going from U.
   Washington to the outside
- Developed a model of multimedia workloads

#### User characteristics (1)

Users are patient



#### User characteristics (2)

- Users slow down as they age
  - clients "die"
  - older clients ask for less each time they use system





#### User characteristics (3)

- Client availability = time client present in system
  - Tracing used could only detect users when their clients transfer data
  - Thus, they only report statistics on client activity, which is a *lower bound* on availability
  - Avg session lengths are typically small (median: 2.4 mins)
    - Many transactions fail

#### Object characteristics (1)

Kazaa is not one workload



•Dichotomy: Small files vs. large files



### Object characteristics (2)

- Kazaa object dynamics
  - Kazaa clients fetch objects at most once
  - Popularity of objects is often short-lived
    - 94% time a Kazaa client requests a given object at most once
    - 99% of time a Kazaa client requests a given object at most twice
  - Most popular objects tend to be recently-born objects
  - Most requests are for old objects (> 1 month)
    - 72% old -28% new for large objects
    - 52% old 48% new for small objects

## Object characteristics (3)

- Kazaa is not Zipf, but it is heavy-tailed
- Zipf's law: popularity of *i*th-most popular object is proportional to  $i^{-\alpha}$ , ( $\alpha$ : Zipf coefficient)
- Web access patterns are Zipf
- Authors conclude that Kazaa is not Zipf because of the at-most-once fetch characteristics



#### Results Summary

- 1. Users are patient
- 2. Users slow down as they age
- 3. Kazaa is not one workload
- 4. Kazaa clients fetch objects at-most-once
- 5. Popularity of objects is often short-lived
- 6. Kazaa is not Zipf

## An Evaluation of Amazon's Grid Computing Services: EC2, S3, and SQS

Simson L. Garfinkel SEAS, Harvard University

#### What they Did

- Did bandwidth measurements
  - From various sites to S3 (Simple Storage Service)
  - Between S3, EC2 (Elastic Compute Cloud)
     and SQS (Simple Queuing Service)

|                               |                |       | Read | Read   | Read  | Write | Write  | Write |
|-------------------------------|----------------|-------|------|--------|-------|-------|--------|-------|
| Host                          | Location       | N     | Avg  | top 1% | Stdev | Avg   | top 1% | Stdev |
| Netherlands                   | Netherlands    | 1,572 | 212  | 294    | 34    | 382   | 493    | 142   |
| Harvard                       | Cambridge, MA  | 914   | 412  | 796    | 121   | 620   | 844    | 95    |
| ISP PIT                       | Pittsburgh, PA | 852   | 530  | 1,005  | 183   | 1,546 | 2,048  | 404   |
| MIT                           | Cambridge, MA  | 864   | 651  | 1,033  | 231   | 2,200 | 2,741  | 464   |
| EC2                           | Amazon         | 5,483 | 799  | 1,314  | 320   | 5,279 | 10,229 | 2,209 |
| Units are in bytes per second |                | 1 -   | ı    | ,      |       | 1 1   | •      | •     |

Table 2: Measurements of S3 read and write performance in KBytes/sec from different locations on the Internet, between 2007-03-29 and 2007-05-03.



Figure 9: Cumulative Distribution Function (CDF) plots for 1MB GET transactions from four locations on the Internet and from EC2.

Effective Bandwidth varies heavily based on (network) geograph<sup>15</sup>!

#### 100 MB Get Ops from EC2 to S3



Figure 1: Average daily throughput as measured by 100MB GET operations from EC2. Error bars show the 5<sup>th</sup> and 95<sup>th</sup> percentile for each day's throughput measurement.

Throughput is relatively stable, except when internal network was reconfigured.



Figure 4: Cumulative Distribution Function (CDF) plots for transactions from EC2 to S3 for transactions of various sizes.

Read and Write throughputs: larger block size is better (but beyond some block size, it makes little difference).



Figure 7: Scatter plots of bandwidth successive S3 GET requests for 1 Byte (left) and 100 Megabyte (right) transactions. The X axis indicates the speed of the first request, while the Y axis indicates the speed of the second.

Concurrency: Consecutive requests receive performance that are highly correlated, especially for large requests

18



Figure 5: Histogram of 1 byte GET throughput, March 20 through April 7.



QoS received by requests fall into multiple "classes" - 100 MB xfers fall into 2 classes.

#### Results Summary

- 1. Effective Bandwidth varies heavily based on geography!
- 2. Throughput is relatively stable, except when internal network was reconfigured.
- 3. Read and Write throughputs: larger requests are better, but throughput plateaus with file size
  - Decreases overhead
- 4. Consecutive requests receive performance that are highly correlated
- 5. QoS received by requests fall into multiple "classes", but need to give clients more control (e.g., via SLAs = Service Level Agreements)

## What Do Real-Life Hadoop Workloads Look Like? (Cloudera)

#### What They Did

- Hadoop workloads from 5 Cloudera customers
  - Diverse industries: "in e-commerce, telecommunications, media, and retail"
  - -2011
- Hadoop workloads from Facebook
  - 2009, 2010 across same cluster

#### The Workloads

| Trace   | Machines | Length                   | Date | Jobs    | Bytes<br>moved     | TB/<br>Day | Jobs/<br>Day | GB/<br>Job |
|---------|----------|--------------------------|------|---------|--------------------|------------|--------------|------------|
| CC-a    | <100     | 1 month                  | 2011 | 5759    | 80 TB              | 3          | 190          | 14         |
| CC-b    | 300      | 9 days                   | 2011 | 22974   | $600~\mathrm{TB}$  | 67         | 2550         | 26         |
| CC-c    | 700      | 1  month                 | 2011 | 21030   | 18 PB              | 600        | 700          | 856        |
| CC-d    | 400-500  | 2+ months                | 2011 | 13283   | 8 PB               | 133        | 220          | 602        |
| CC-e    | 100      | 9 days                   | 2011 | 10790   | 590  TB            | 66         | 1200         | 55         |
| FB-2009 | 600      | 6 months                 | 2009 | 1129193 | 9.4 PB             | 52         | 6270         | 8          |
| FB-2010 | 3000     | 1.5 months               | 2010 | 1169184 | $1.5  \mathrm{EB}$ | 33333      | 25980        | 1283       |
| Total   | >5000    | $\approx 1 \text{ year}$ | -    | 2372213 | 1.6 EB             |            |              |            |

#### Data access patterns (1/2)

 Skew in access frequency across (HDFS) files





Figure 2: Log-log file access frequency vs. rank. Showing Zipf distribution of same shape (slope) for all workloads.

 90% of jobs access files of less than a few GBs; such files account for only 16% of bytes stored



Figure 3: Access patterns vs. input file size. Showing cummulative fraction of jobs with input files of a certain size (top) and cummulative fraction of all stored bytes from input files of a certain size (bottom).

### Data access patterns (2/2)

#### Temporal Locality in data accesses



Figure 5: Data re-accesses intervals. Showing interval between when an input file is re-read (top), and when an output is re-used as the input for another job (bottom).



Figure 6: Fraction of jobs that reads pre-existing input path. Note that output path information is missing from FB-2010.

Can you make Hadoop/HDFS better, now that you know these characteristics?

#### Burstiness



Figure 8: Workload burstiness. Showing cummulative distribution of task-time (sum of map time and reduce time) per hour. To allow comparison between workloads, all values have been normalized by the median task-time per hour for each workload. For comparison, we also show burstiness for artificial sine submit patterns, scaled with min-max range the same as mean (sine + 2) and 10% of mean (sine + 20).

#### Plotted

- Sum of task-time (map+ reduce) over an hourinterval
- n-th percentile / median

#### Facebook

- From 2009 to 2010,
  peak-to-median ratio
  dropped from 31:1 to
  9:1
- Claim: consolidation decreases burstiness

## High-level Processing Frameworks



Each cluster prefers 1-2 data processing frameworks

Figure 10: The first word of job names for each workload, weighted by the number of jobs beginning with each word (top), total I/O in bytes (middle), and map/reduce task-time (bottom). For example, 44% of jobs in the FB-2009 workload have a name beginning with "ad", a further 12% begin with "insert"; 27% of all I/O and 34% of total task-time comes from jobs with names that begin with "from" (middle and bottom). The FB-2010 trace did not contain job names.

#### Classification by multi-dimensional clustering

|         | # Jobs  | Input             | Shuffle           | Output            | Duration           | Map time        | Reduce time      | Label                      |
|---------|---------|-------------------|-------------------|-------------------|--------------------|-----------------|------------------|----------------------------|
| СС-е    | 10243   | 8.1 MB            | 0                 | 970 KB            | 18 sec             | 15              | 0                | Small jobs                 |
|         | 452     | 166 GB            | $180~\mathrm{GB}$ | 118 GB            | 31 min             | 35,606          | 38,194           | Transform, large           |
|         | 68      | 543 GB            | 502  GB           | $166~\mathrm{GB}$ | 2  hrs             | 115,077         | 108,745          | Transform, very large      |
|         | 20      | 3.0 TB            | 0                 | 200 B             | $5   \mathrm{min}$ | 137,077         | 0                | Map only summary           |
|         | 7       | 6.7 TB            | $2.3~\mathrm{GB}$ | 6.7 TB            | 3  hrs  47  min    | 335,807         | 0                | Map only transform         |
| FB-2009 | 1081918 | 21 KB             | 0                 | 871 KB            | 32 s               | 20              | 0                | Small jobs                 |
|         | 37038   | 381 KB            | 0                 | $1.9~\mathrm{GB}$ | 21 min             | 6,079           | 0                | Load data, fast            |
|         | 2070    | 10 KB             | 0                 | $4.2~\mathrm{GB}$ | 1  hr  50  min     | 26,321          | 0                | Load data, slow            |
|         | 602     | $405~\mathrm{KB}$ | 0                 | $447~\mathrm{GB}$ | 1  hr  10  min     | 66,657          | 0                | Load data, large           |
|         | 180     | 446 KB            | 0                 | $1.1~\mathrm{TB}$ | 5  hrs  5  min     | $125,\!662$     | 0                | Load data, huge            |
|         | 6035    | 230 GB            | $8.8~\mathrm{GB}$ | $491~\mathrm{MB}$ | 15 min             | 104,338         | 66,760           | Aggregate, fast            |
|         | 379     | 1.9 TB            | 502  MB           | $2.6~\mathrm{GB}$ | 30 min             | 348,942         | 76,736           | Aggregate and expand       |
|         | 159     | 418 GB            | $2.5~\mathrm{TB}$ | $45~\mathrm{GB}$  | 1  hr  25  min     | 1,076,089       | 974,395          | Expand and aggregate       |
|         | 793     | $255~\mathrm{GB}$ | $788~\mathrm{GB}$ | $1.6~\mathrm{GB}$ | $35  \mathrm{min}$ | 384,562         | 338,050          | Data transform             |
|         | 19      | 7.6 TB            | $51~\mathrm{GB}$  | $104~\mathrm{KB}$ | $55  \mathrm{min}$ | 4,843,452       | 853,911          | Data summary               |
| FB-2010 | 1145663 | 6.9 MB            | 600 B             | 60 KB             | 1 min              | 48              | 34               | Small jobs                 |
|         | 7911    | 50 GB             | 0                 | $61~\mathrm{GB}$  | 8 hrs              | 60,664          | 0                | Map only transform, 8 hrs  |
|         | 779     | 3.6 TB            | 0                 | $4.4~\mathrm{TB}$ | $45  \mathrm{min}$ | 3,081,710       | 0                | Map only transform, 45 min |
|         | 670     | $2.1~\mathrm{TB}$ | 0                 | $2.7~\mathrm{GB}$ | 1  hr  20  min     | $9,\!457,\!592$ | 0                | Map only aggregate         |
|         | 104     | 35 GB             | 0                 | $3.5~\mathrm{GB}$ | $3  \mathrm{davs}$ | 198,436         | 0                | Map only transform, 3 days |
|         | 11491   | 1.5 TB            | $30~\mathrm{GB}$  | $2.2~\mathrm{GB}$ | 30 min             | $1,\!112,\!765$ | 387,191          | Aggregate                  |
| İ       | 1876    | 711 GB            | $2.6~\mathrm{TB}$ | $860~\mathrm{GB}$ | 2  hrs             | 1,618,792       | 2,056,439        | Transform, 2 hrs           |
|         | 454     | 9.0 TB            | $1.5~\mathrm{TB}$ | $1.2~\mathrm{TB}$ | $1 \mathrm{\ hr}$  | 1,795,682       | 818,344          | Aggregate and transform    |
|         | 169     | $2.7~\mathrm{TB}$ | 12  TB            | $260~\mathrm{GB}$ | 2  hrs  7  min     | 2,862,726       | 3,091,678        | Expand and aggregate       |
|         | 67      | 630 GB            | $1.2~\mathrm{TB}$ | $140~\mathrm{GB}$ | 18 hrs             | $1,\!545,\!220$ | $18,\!144,\!174$ | Transform, 18 hrs          |

#### Results Summary

- Workloads different across industries
- Yet commonalities
  - Zipf distribution for access file access frequency
  - Slope same across all industries
- 90% of all jobs access small files, while the other 10% account for 84% of the file accesses
  - Parallels p2p systems (mp3-mpeg split)
- A few frameworks popular for each cluster
- Lots of small jobs

#### Summary

- We design algorithms, implement and deploy them
- But when you factor in the real world, unexpected characteristics may arise
- Important to understand these characteristics to build better distributed systems for the real world

#### Optional Slides - Understanding Availability (P2P Systems)

R. Bhagwan, S. Savage, G. Voelker University of California, San Diego

#### What They Did

- Measurement study of peer-to-peer (P2P) file sharing application
  - Overnet (January 2003)
  - Based on Kademlia, a DHT based on xor routing metric
    - Each node uses a random self-generated ID
    - The ID remains constant (unlike IP address)
    - Used to collect availability traces
  - Closed-source
- Analyze collected data to analyze availability
- Availability = % of time a node is online (node=user, or machine)

#### What They Did

#### • Crawler:

- Takes a snapshot of all the active hosts by repeatedly requesting 50 randomly generated IDs.
- The requests lead to discovery of some hosts (through routing requests), which are sent the same 50 IDs, and the process is repeated.
- Run once every 4 hours to minimize impact

#### • Prober:

- Probe the list of available IDs to check for availability
  - By sending a request to ID *I*; request succeeds only if *I* replies
  - Does not use TCP, avoids problems with NAT and DHCP
- Used on only randomly selected 2400 hosts from the initial list
- Run every 20 minutes

#### Scale of Data

- Ran for 15 days from January 14 to January 28 (with problems on January 21) 2003
- Each pass of crawler yielded 40,000 hosts.
- In a single day (6 crawls) yielded between 70,000 and 90,000 unique hosts.
- 1468 of the 2400 randomly selected hosts probes responded at least once

### Multiple IP Hosts



Figure 1: Percentage of hosts that have more than one IP address across different periods of time.

#### Availability



Figure 2: Host availability derived using unique host ID probes vs. IP address probes.

#### Results Summary

- 1. Overall availability is low
- 2. Diurnal patterns existing in availability
- 3. Availabilities are uncorrelated across nodes
- 4. High Churn exists