CS 425 / ECE 428 Distributed Systems Fall 2014 Indranil Gupta (Indy) Measurement Studies Lecture 23 Reading: See links on website #### Motivation - We design algorithms, implement and deploy them as systems - But when you factor in the real world, unexpected characteristics may arise - Important to understand these characteristics to build better distributed systems for the real world - We'll look at three systems: Kazaa (P2P system), AWS EC2 (Elastic Compute Cloud), Hadoop ## How do you find characteristics of these Systems in Real-life Settings? - Write a crawler to crawl a real working system (e.g., p2p system), or a benchmark (e.g., Hadoop) - Collect *traces* from the crawler/benchmark - Tabulate the results - Papers contain plenty of information on how data was collected, the caveats, ifs and buts of the interpretation, etc. - These are important, but we will ignore them for this lecture and concentrate on the raw data and conclusions # Measurement, Modeling, and Analysis of a Peer-to-Peer File-Sharing Workload Gummadi et al Department of Computer Science University of Washington #### What They Did - Kazaa: popular p2p file sharing system in 2003 - 2003 paper analyzed 200-day trace of Kazaa traffic - Considered only requests going from U. Washington to the outside - Developed a model of multimedia workloads #### User characteristics (1) Users are patient #### User characteristics (2) - Users slow down as they age - clients "die" - older clients ask for less each time they use system #### User characteristics (3) - Client availability = time client present in system - Tracing used could only detect users when their clients transfer data - Thus, they only report statistics on client activity, which is a *lower bound* on availability - Avg session lengths are typically small (median: 2.4 mins) - Many transactions fail #### Object characteristics (1) Kazaa is not one workload •Dichotomy: Small files vs. large files ### Object characteristics (2) - Kazaa object dynamics - Kazaa clients fetch objects at most once - Popularity of objects is often short-lived - 94% time a Kazaa client requests a given object at most once - 99% of time a Kazaa client requests a given object at most twice - Most popular objects tend to be recently-born objects - Most requests are for old objects (> 1 month) - 72% old -28% new for large objects - 52% old 48% new for small objects ## Object characteristics (3) - Kazaa is not Zipf, but it is heavy-tailed - Zipf's law: popularity of *i*th-most popular object is proportional to $i^{-\alpha}$, (α : Zipf coefficient) - Web access patterns are Zipf - Authors conclude that Kazaa is not Zipf because of the at-most-once fetch characteristics #### Results Summary - 1. Users are patient - 2. Users slow down as they age - 3. Kazaa is not one workload - 4. Kazaa clients fetch objects at-most-once - 5. Popularity of objects is often short-lived - 6. Kazaa is not Zipf ## An Evaluation of Amazon's Grid Computing Services: EC2, S3, and SQS Simson L. Garfinkel SEAS, Harvard University #### What they Did - Did bandwidth measurements - From various sites to S3 (Simple Storage Service) - Between S3, EC2 (Elastic Compute Cloud) and SQS (Simple Queuing Service) | | | | Read | Read | Read | Write | Write | Write | |-------------------------------|----------------|-------|------|--------|-------|-------|--------|-------| | Host | Location | N | Avg | top 1% | Stdev | Avg | top 1% | Stdev | | Netherlands | Netherlands | 1,572 | 212 | 294 | 34 | 382 | 493 | 142 | | Harvard | Cambridge, MA | 914 | 412 | 796 | 121 | 620 | 844 | 95 | | ISP PIT | Pittsburgh, PA | 852 | 530 | 1,005 | 183 | 1,546 | 2,048 | 404 | | MIT | Cambridge, MA | 864 | 651 | 1,033 | 231 | 2,200 | 2,741 | 464 | | EC2 | Amazon | 5,483 | 799 | 1,314 | 320 | 5,279 | 10,229 | 2,209 | | Units are in bytes per second | | 1 - | ı | , | | 1 1 | • | • | Table 2: Measurements of S3 read and write performance in KBytes/sec from different locations on the Internet, between 2007-03-29 and 2007-05-03. Figure 9: Cumulative Distribution Function (CDF) plots for 1MB GET transactions from four locations on the Internet and from EC2. Effective Bandwidth varies heavily based on (network) geograph¹⁵! #### 100 MB Get Ops from EC2 to S3 Figure 1: Average daily throughput as measured by 100MB GET operations from EC2. Error bars show the 5th and 95th percentile for each day's throughput measurement. Throughput is relatively stable, except when internal network was reconfigured. Figure 4: Cumulative Distribution Function (CDF) plots for transactions from EC2 to S3 for transactions of various sizes. Read and Write throughputs: larger block size is better (but beyond some block size, it makes little difference). Figure 7: Scatter plots of bandwidth successive S3 GET requests for 1 Byte (left) and 100 Megabyte (right) transactions. The X axis indicates the speed of the first request, while the Y axis indicates the speed of the second. Concurrency: Consecutive requests receive performance that are highly correlated, especially for large requests 18 Figure 5: Histogram of 1 byte GET throughput, March 20 through April 7. QoS received by requests fall into multiple "classes" - 100 MB xfers fall into 2 classes. #### Results Summary - 1. Effective Bandwidth varies heavily based on geography! - 2. Throughput is relatively stable, except when internal network was reconfigured. - 3. Read and Write throughputs: larger requests are better, but throughput plateaus with file size - Decreases overhead - 4. Consecutive requests receive performance that are highly correlated - 5. QoS received by requests fall into multiple "classes", but need to give clients more control (e.g., via SLAs = Service Level Agreements) ## What Do Real-Life Hadoop Workloads Look Like? (Cloudera) #### What They Did - Hadoop workloads from 5 Cloudera customers - Diverse industries: "in e-commerce, telecommunications, media, and retail" - -2011 - Hadoop workloads from Facebook - 2009, 2010 across same cluster #### The Workloads | Trace | Machines | Length | Date | Jobs | Bytes
moved | TB/
Day | Jobs/
Day | GB/
Job | |---------|----------|--------------------------|------|---------|--------------------|------------|--------------|------------| | CC-a | <100 | 1 month | 2011 | 5759 | 80 TB | 3 | 190 | 14 | | CC-b | 300 | 9 days | 2011 | 22974 | $600~\mathrm{TB}$ | 67 | 2550 | 26 | | CC-c | 700 | 1 month | 2011 | 21030 | 18 PB | 600 | 700 | 856 | | CC-d | 400-500 | 2+ months | 2011 | 13283 | 8 PB | 133 | 220 | 602 | | CC-e | 100 | 9 days | 2011 | 10790 | 590 TB | 66 | 1200 | 55 | | FB-2009 | 600 | 6 months | 2009 | 1129193 | 9.4 PB | 52 | 6270 | 8 | | FB-2010 | 3000 | 1.5 months | 2010 | 1169184 | $1.5 \mathrm{EB}$ | 33333 | 25980 | 1283 | | Total | >5000 | $\approx 1 \text{ year}$ | - | 2372213 | 1.6 EB | | | | #### Data access patterns (1/2) Skew in access frequency across (HDFS) files Figure 2: Log-log file access frequency vs. rank. Showing Zipf distribution of same shape (slope) for all workloads. 90% of jobs access files of less than a few GBs; such files account for only 16% of bytes stored Figure 3: Access patterns vs. input file size. Showing cummulative fraction of jobs with input files of a certain size (top) and cummulative fraction of all stored bytes from input files of a certain size (bottom). ### Data access patterns (2/2) #### Temporal Locality in data accesses Figure 5: Data re-accesses intervals. Showing interval between when an input file is re-read (top), and when an output is re-used as the input for another job (bottom). Figure 6: Fraction of jobs that reads pre-existing input path. Note that output path information is missing from FB-2010. Can you make Hadoop/HDFS better, now that you know these characteristics? #### Burstiness Figure 8: Workload burstiness. Showing cummulative distribution of task-time (sum of map time and reduce time) per hour. To allow comparison between workloads, all values have been normalized by the median task-time per hour for each workload. For comparison, we also show burstiness for artificial sine submit patterns, scaled with min-max range the same as mean (sine + 2) and 10% of mean (sine + 20). #### Plotted - Sum of task-time (map+ reduce) over an hourinterval - n-th percentile / median #### Facebook - From 2009 to 2010, peak-to-median ratio dropped from 31:1 to 9:1 - Claim: consolidation decreases burstiness ## High-level Processing Frameworks Each cluster prefers 1-2 data processing frameworks Figure 10: The first word of job names for each workload, weighted by the number of jobs beginning with each word (top), total I/O in bytes (middle), and map/reduce task-time (bottom). For example, 44% of jobs in the FB-2009 workload have a name beginning with "ad", a further 12% begin with "insert"; 27% of all I/O and 34% of total task-time comes from jobs with names that begin with "from" (middle and bottom). The FB-2010 trace did not contain job names. #### Classification by multi-dimensional clustering | | # Jobs | Input | Shuffle | Output | Duration | Map time | Reduce time | Label | |---------|---------|-------------------|-------------------|-------------------|--------------------|-----------------|------------------|----------------------------| | СС-е | 10243 | 8.1 MB | 0 | 970 KB | 18 sec | 15 | 0 | Small jobs | | | 452 | 166 GB | $180~\mathrm{GB}$ | 118 GB | 31 min | 35,606 | 38,194 | Transform, large | | | 68 | 543 GB | 502 GB | $166~\mathrm{GB}$ | 2 hrs | 115,077 | 108,745 | Transform, very large | | | 20 | 3.0 TB | 0 | 200 B | $5 \mathrm{min}$ | 137,077 | 0 | Map only summary | | | 7 | 6.7 TB | $2.3~\mathrm{GB}$ | 6.7 TB | 3 hrs 47 min | 335,807 | 0 | Map only transform | | FB-2009 | 1081918 | 21 KB | 0 | 871 KB | 32 s | 20 | 0 | Small jobs | | | 37038 | 381 KB | 0 | $1.9~\mathrm{GB}$ | 21 min | 6,079 | 0 | Load data, fast | | | 2070 | 10 KB | 0 | $4.2~\mathrm{GB}$ | 1 hr 50 min | 26,321 | 0 | Load data, slow | | | 602 | $405~\mathrm{KB}$ | 0 | $447~\mathrm{GB}$ | 1 hr 10 min | 66,657 | 0 | Load data, large | | | 180 | 446 KB | 0 | $1.1~\mathrm{TB}$ | 5 hrs 5 min | $125,\!662$ | 0 | Load data, huge | | | 6035 | 230 GB | $8.8~\mathrm{GB}$ | $491~\mathrm{MB}$ | 15 min | 104,338 | 66,760 | Aggregate, fast | | | 379 | 1.9 TB | 502 MB | $2.6~\mathrm{GB}$ | 30 min | 348,942 | 76,736 | Aggregate and expand | | | 159 | 418 GB | $2.5~\mathrm{TB}$ | $45~\mathrm{GB}$ | 1 hr 25 min | 1,076,089 | 974,395 | Expand and aggregate | | | 793 | $255~\mathrm{GB}$ | $788~\mathrm{GB}$ | $1.6~\mathrm{GB}$ | $35 \mathrm{min}$ | 384,562 | 338,050 | Data transform | | | 19 | 7.6 TB | $51~\mathrm{GB}$ | $104~\mathrm{KB}$ | $55 \mathrm{min}$ | 4,843,452 | 853,911 | Data summary | | FB-2010 | 1145663 | 6.9 MB | 600 B | 60 KB | 1 min | 48 | 34 | Small jobs | | | 7911 | 50 GB | 0 | $61~\mathrm{GB}$ | 8 hrs | 60,664 | 0 | Map only transform, 8 hrs | | | 779 | 3.6 TB | 0 | $4.4~\mathrm{TB}$ | $45 \mathrm{min}$ | 3,081,710 | 0 | Map only transform, 45 min | | | 670 | $2.1~\mathrm{TB}$ | 0 | $2.7~\mathrm{GB}$ | 1 hr 20 min | $9,\!457,\!592$ | 0 | Map only aggregate | | | 104 | 35 GB | 0 | $3.5~\mathrm{GB}$ | $3 \mathrm{davs}$ | 198,436 | 0 | Map only transform, 3 days | | | 11491 | 1.5 TB | $30~\mathrm{GB}$ | $2.2~\mathrm{GB}$ | 30 min | $1,\!112,\!765$ | 387,191 | Aggregate | | İ | 1876 | 711 GB | $2.6~\mathrm{TB}$ | $860~\mathrm{GB}$ | 2 hrs | 1,618,792 | 2,056,439 | Transform, 2 hrs | | | 454 | 9.0 TB | $1.5~\mathrm{TB}$ | $1.2~\mathrm{TB}$ | $1 \mathrm{\ hr}$ | 1,795,682 | 818,344 | Aggregate and transform | | | 169 | $2.7~\mathrm{TB}$ | 12 TB | $260~\mathrm{GB}$ | 2 hrs 7 min | 2,862,726 | 3,091,678 | Expand and aggregate | | | 67 | 630 GB | $1.2~\mathrm{TB}$ | $140~\mathrm{GB}$ | 18 hrs | $1,\!545,\!220$ | $18,\!144,\!174$ | Transform, 18 hrs | #### Results Summary - Workloads different across industries - Yet commonalities - Zipf distribution for access file access frequency - Slope same across all industries - 90% of all jobs access small files, while the other 10% account for 84% of the file accesses - Parallels p2p systems (mp3-mpeg split) - A few frameworks popular for each cluster - Lots of small jobs #### Summary - We design algorithms, implement and deploy them - But when you factor in the real world, unexpected characteristics may arise - Important to understand these characteristics to build better distributed systems for the real world #### Optional Slides - Understanding Availability (P2P Systems) R. Bhagwan, S. Savage, G. Voelker University of California, San Diego #### What They Did - Measurement study of peer-to-peer (P2P) file sharing application - Overnet (January 2003) - Based on Kademlia, a DHT based on xor routing metric - Each node uses a random self-generated ID - The ID remains constant (unlike IP address) - Used to collect availability traces - Closed-source - Analyze collected data to analyze availability - Availability = % of time a node is online (node=user, or machine) #### What They Did #### • Crawler: - Takes a snapshot of all the active hosts by repeatedly requesting 50 randomly generated IDs. - The requests lead to discovery of some hosts (through routing requests), which are sent the same 50 IDs, and the process is repeated. - Run once every 4 hours to minimize impact #### • Prober: - Probe the list of available IDs to check for availability - By sending a request to ID *I*; request succeeds only if *I* replies - Does not use TCP, avoids problems with NAT and DHCP - Used on only randomly selected 2400 hosts from the initial list - Run every 20 minutes #### Scale of Data - Ran for 15 days from January 14 to January 28 (with problems on January 21) 2003 - Each pass of crawler yielded 40,000 hosts. - In a single day (6 crawls) yielded between 70,000 and 90,000 unique hosts. - 1468 of the 2400 randomly selected hosts probes responded at least once ### Multiple IP Hosts Figure 1: Percentage of hosts that have more than one IP address across different periods of time. #### Availability Figure 2: Host availability derived using unique host ID probes vs. IP address probes. #### Results Summary - 1. Overall availability is low - 2. Diurnal patterns existing in availability - 3. Availabilities are uncorrelated across nodes - 4. High Churn exists