CS 425/ ECE 428
Distributed Systems
Fall 2014

Indranil Gupta (Indy)

Lecture 22: Stream Processing, Graph

Processin
& All slides © I1G

STREAM PROCESSING: WHAT WE'LL COVER

* Why Stream Processing
* Storm

STREAM PROCESSING CHALLENGE

* Large amounts of data => Need for real-time views of
data
* Social network trends, e.g., Twitter real-time search
* Website statistics, e.g., Google Analytics
* Intrusion detection systems, €.g., in most datacenters

* Process large amounts of data
* With latencies of few seconds
* With high throughput

MAPREDUCE?

* Batch Processing => Need to wait for entire computation
on large dataset to complete

* Not intended for long-running stream-processing

Apache Project
https://storm.incubator.apache.org/

Highly active JVM project
Multiple languages supported via API
* Python, Ruby, etc.

Used by over 30 companies including
* Twitter: For personalization, search
* Flipboard: For generating custom feeds

 Weather Channel, WebMD, etc.

STORM COMPONENTS

* Tuples

* Streams

* Spouts

* Bolts

* Topologies

e An ordered list of elements

 E.g., <tweeter, tweet>
* E.g.,<*Miley Cyrus”, “Hey! Here’s my new song!”>
 E.g., <*Justin Bieber”, “Hey! Here’s MY new song!”>

* E.g.,<URL, clicker-IP, date, time>
* E.g.,<coursera.org, 101.201.301.401, 4/4/2014, 10:35:40>
* E.g., <coursera.org, 901.801.701.601, 4/4/2014, 10:35:42>

* Sequence of tuples
* Potentially unbounded in number of tuples - - -

* Social network example: >
 <*Miley Cyrus”, “Hey! Here’s my new song!”>,

<“Justin Bieber”, “Hey! Here’s MY new song!”>,
<“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, ...

* Website example:

* <coursera.org, 101.201.301.401, 4/4/2014, 10:35:40>, <coursera.org,
901.801.701.601, 4/4/2014, 10:35:42>, ...

* A Storm entity (process) that is a source of streams
* Often reads from a crawler or DB

* A Storm entity (process) that
* Processes input streams
* Outputs more streams for other bolts

TOPOLOGY

* A directed graph of spouts and bolts (and output bolts)
* Corresponds to a Storm ““application”

TOPOLOGY

* Can have cycles if the application

requires 1t

BOLTS COME IN MANY FLAVORS

* Operations that can be performed
* Filter: forward only tuples which satisfy a condition

* Joins: When receiving two streams A and B, output all pairs
(A,B) which satisfy a condition

* Apply/transform: Modify each tuple according to a function
* And many others

* But bolts need to process a lot of data
* Need to make them fast

PARALLELIZING BoOLTS

* Have multiple processes (“tasks™) constitute a bolt
* Incoming streams split among the tasks

* Typically each incoming tuple goes to one task in the bolt
Decided by “Grouping strategy”™

* Three types of grouping are popular

* Shuffle Grouping
e Streams are distributed randomly to the bolt’s tasks

* Randomly but consistently — use a hash function! (Remember consistent
hashing from P2P systems?)

* Fields Grouping
* QGroup a stream by a subset of its fields

 E.g., All tweets where twitter username starts with [A-M,a-m,0-4] goes to task
I, and all tweets starting with [N-Z,n-z,5-9] go to task 2

* All Grouping
* All tasks of bolt receive all input tuples
* Useful for joins

e Master node

e Runs a daemon called Nimbus

* Responsible for
e Distributing code around cluster
* Assigning tasks to machines
* Monitoring for failures of machines

* Worker node
 Runs on a machine (server)
* Runs a daemon called Supervisor
* Listens for work assigned to its machines
 Zookeeper
* Coordinates Nimbus and Supervisors communication
* All state of Supervisor and Nimbus 1s kept here

A tuple 1s considered failed when its topology (graph) of
resulting tuples fails to be fully processed within a specified
timeout

Anchoring: Anchor an output to one or more input tuples

* Failure of one tuple causes one or more tuples to replayed

API For FAULT-TOLERANCE (OUTPUTCOLLECTOR)

* Emit(tuple, output)

* Emits an output tuple, perhaps anchored on an input tuple (first argument)
* Ack(tuple)

* Acknowledge that you (bolt) finished processing a tuple
* Fail(tuple)

* Immediately fail the spout tuple at the root of tuple topology if there is an
exception from the database, etc.

* Must remember to ack/fail each tuple

* Each tuple consumes memory. Failure to do so results in memory leaks.

SUMMARY: STREAM PROCESSING

* Processing data in real-time a big requirement today

* Storm
* And other sister systems, e.g., Spark Streaming

e Parallelism
* Application topologies
 Fault-tolerance

GRAPH PROCESSING: WHAT WE'LL COVER

* Distributed Graph Processing
* Google’s Pregel system

* Inspiration for many newer graph processing
systems: Piccolo, Giraph, GraphLab,
PowerGraph, LFGraph, X-Stream, etc.

LoTs OF GRAPHS

* Large graphs are all around us

* Internet Graph: vertices are routers/switches and edges
are links

* World Wide Web: vertices are webpages, and edges are
URL links on a webpage pointing to another webpage

* (Called “Directed” graph as edges are uni-directional
* Social graphs: Facebook, Twitter, LinkedIn Source: Wikimedia Commons

* Biological graphs: DNA interaction graphs, ecosystem
graphs, etc.

GRAPH PROCESSING OPERATIONS

* Need to derive properties from these graphs
* Need to summarize these graphs into statistics
* E.g., find shortest paths between pairs of vertices

* Internet (for routing)

* LinkedIn (degrees of separation)
* E.g., do matching

* Dating graphs in match.com (for better dates)
* PageRank

* Web Graphs
* Google search, Bing search, Yahoo search: all rely on this

* And many (many) other examples!

WHY HARD?

* Because these graphs are large!

 Human social network has 100s Millions of vertices
and Billions of edges

* WWW has Millions of vertices and edges

* Hard to store the entire graph on one server and
process 1t
* Slow on one server (even 1f beefy!)

 Use distributed cluster/cloud!

TYPICAL GRAPH PROCESSING APPLICATION

* Works 1n iterations
* [Each vertex assigned a value C

 In each iteration, each vertex: B
1. Gathers values from its immediate neighbors (vertices who A
join it directly with an edge). E.g., @A: B2>A,C2>A,D2A,
D
2. Does some computation using its own value and its neighbors \E<

values.

3. Updates its new value and sends it out to its neighboring
vertices. E.g., A>B,C,D, E

* Graph processing terminates after: 1) fixed iterations, or 11)
vertices stop changing values

HAapooprP/MAPREDUCE TO THE RESCUE?

* Multi-stage Hadoop
* FEach stage == 1 graph iteration
* Assign vertex 1ds as keys 1n the reduce phase

© Well-known

@® At the end of every stage, transfer all vertices over
network (to neighbor vertices)
@ All vertex values written to HDFS (file system)
@ Very slow!

BULK SYNCHRONOUS PARALLEL MODEL

e “Think like a vertex”

Processors
* Originally by Valiant (1990)
Local
Computation
Communication)%
parmier]

Synchronisation][
Source: http://en.wikipedia.org/wiki/Bulk synchronous parallel

BAsic DISTRIBUTED GRAPH PROCESSING

* “Think like a vertex”
* Assign each vertex to one server
* Each server thus gets a subset of vertices

* In each iteration, each server performs Gather-Apply-Scatter
for all 1ts assigned vertices

* Qather: get all neighboring vertices’ values

* Apply: compute own new value from own old value and gathered
neighbors’ values

* Scatter: send own new value to neighboring vertices

* How to decide which server a given vertex 1s assigned
to?

* Different options

* Hash-based: Hash(vertex 1d) modulo number of servers
* Remember consistent hashing from P2P systems?!

* Locality-based: Assign vertices with more neighbors to the
same server as its neighbors
* Reduces server to server communication volume after each iteration

* Need to be careful: some “intelligent” locality-based schemes may
take up a lot of upfront time and may not give sufficient benefits!

PREGEL SYSTEM BY GOOGLE

* Pregel uses the master/worker model

* Master (one server)

* Maintains list of worker servers

* Monitors workers; restarts them on failure

* Provides Web-UI monitoring tool of job progress
* Worker (rest of the servers)

* Processes its vertices

 Communicates with the other workers

* Persistent data 1s stored as files on a distributed storage system
(such as GFS or BigTable)

* Temporary data is stored on local disk

4.

5.

PREGEL EXECUTION

Many copies of the program begin executing on a cluster

The master assigns a partition of input (vertices) to each worker
Each worker loads the vertices and marks them as active

The master instructs each worker to perform a iteration
Each worker loops through its active vertices & computes for each vertex

Messages can be sent whenever, but need to be delivered before the end of the iteration
(i.e., the barrier)

When all workers reach iteration barrier, master starts next iteration

Computation halts when, in some iteration: no vertices are active and when no
messages are 1n transit

Master instructs each worker to save its portion of the graph

FAULT-TOLERANCE IN PREGEL

 Checkpointing

* Periodically, master instructs the workers to save state of their partitions to
persistent storage

* e.g., Vertex values, edge values, incoming messages
 Failure detection
« Using periodic “ping” messages from master = worker
* Recovery
* The master reassigns graph partitions to the currently available workers

* The workers all reload their partition state from most recent available
checkpoint

Shortest paths from one vertex to all vertices
* SSSP: “Single Source Shortest Path”

On 1 Billion vertex graph (tree)

50 workers: 180 seconds
e 800 workers: 20 seconds

50 B vertices on 800 workers: 700 seconds (~12 minutes)
Pretty Fast!

SUMMARY: GRAPH PROCESSING

* Lots of (large) graphs around us
* Need to process these
* MapReduce not a good match
* Distributed Graph Processing systems: Pregel by Google
* Many follow-up systems
* Piccolo, Giraph: Pregel-like

* GraphLab, PowerGraph, LFGraph, X-Stream: more
advanced

