
CS 425 / ECE 428
Distributed Systems

Fall 2014
Indranil Gupta (Indy)

Lecture 19-21: Key-value/NoSQL Stores

All slides © IG

The Key-value Abstraction

•  (Business) Key à Value
•  (twitter.com) tweet id à information about tweet
•  (amazon.com) item number à information about

it
•  (kayak.com) Flight number à information about

flight, e.g., availability
•  (yourbank.com) Account number à information

about it

The Key-value Abstraction (2)

•  It’s a dictionary datastructure.
•  Insert, lookup, and delete by key
•  E.g., hash table, binary tree

•  But distributed.
•  Sound familiar? Remember Distributed Hash

tables (DHT) in P2P systems?
•  It’s not surprising that key-value stores reuse

many techniques from DHTs.

Isn’t that just a database?

•  Yes, sort of
•  Relational Database Management Systems

(RDBMSs) have been around for ages
•  MySQL is the most popular among them
•  Data stored in tables
•  Schema-based, i.e., structured tables
•  Each row (data item) in a table has a primary key

that is unique within that table
•  Queried using SQL (Structured Query Language)
•  Supports joins

Relational Database Example

Example SQL queries
1.  SELECT zipcode
 FROM users
 WHERE name = “Bob”

2. SELECT url
 FROM blog
 WHERE id = 3

3.  SELECT users.zipcode, blog.num_posts
 FROM users JOIN blog
 ON users.blog_url = blog.url

user_id name zipcode blog_url blog_id

101 Alice 12345 alice.net 1

422 Charlie 45783 charlie.com 3

555 Bob 99910 bob.blogspot.com 2

users table

Primary keys

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 4/2/13 10003

3 charlie.com 6/15/14 7

blog table

Foreign keys

Mismatch with today’s workloads

•  Data: Large and unstructured
•  Lots of random reads and writes
•  Sometimes write-heavy
•  Foreign keys rarely needed
•  Joins infrequent

Needs of Today’s Workloads

•  Speed
•  Avoid Single point of Failure (SPoF)
•  Low TCO (Total cost of operation)
•  Fewer system administrators
•  Incremental Scalability
•  Scale out, not up

•  What?

Scale out, not Scale up

•  Scale up = grow your cluster capacity by replacing with
more powerful machines

•  Traditional approach
•  Not cost-effective, as you’re buying above the sweet

spot on the price curve
•  And you need to replace machines often

•  Scale out = incrementally grow your cluster capacity by
adding more COTS machines (Components Off the Shelf)

•  Cheaper
•  Over a long duration, phase in a few newer (faster)

machines as you phase out a few older machines
•  Used by most companies who run datacenters and

clouds today

Key-value/NoSQL Data Model

•  NoSQL = “Not Only SQL”
•  Necessary API operations: get(key) and put(key, value)

•  And some extended operations, e.g., “CQL” in
Cassandra key-value store

•  Tables
•  “Column families” in Cassandra, “Table” in HBase,

“Collection” in MongoDB
•  Like RDBMS tables, but …
•  May be unstructured: May not have schemas

•  Some columns may be missing from some rows
•  Don’t always support joins or have foreign keys
•  Can have index tables, just like RDBMSs

Key-value/NoSQL Data Model

•  Unstructured

•  Columns
Missing from
some Rows

•  No schema
imposed

•  No foreign
keys, joins may
not be
supported

user_id name zipcode blog_url

101 Alice 12345 alice.net

422 Charlie charlie.com

555 99910 bob.blogspot.com

users table

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com 10003

3 charlie.com 6/15/14

blog table

Key
Value

Key

Value

Column-Oriented Storage

NoSQL systems often use column-oriented storage
•  RDBMSs store an entire row together (on disk or at a

server)
•  NoSQL systems typically store a column together (or a

group of columns).
•  Entries within a column are indexed and easy to

locate, given a key (and vice-versa)
•  Why useful?

•  Range searches within a column are fast since you
don’t need to fetch the entire database

•  E.g., Get me all the blog_ids from the blog table that
were updated within the past month

•  Search in the the last_updated column, fetch
corresponding blog_id column

•  Don’t need to fetch the other columns

Next

Design of a real key-value store, Cassandra.

Cassandra

•  A distributed key-value store
•  Intended to run in a datacenter (and also across DCs)
•  Originally designed at Facebook
•  Open-sourced later, today an Apache project
•  Some of the companies that use Cassandra in their

production clusters
•  IBM, Adobe, HP, eBay, Ericsson, Symantec
•  Twitter, Spotify
•  PBS Kids
•  Netflix: uses Cassandra to keep track of your

current position in the video you’re watching

Let’s go Inside Cassandra:
 Key -> Server Mapping

•  How do you decide which server(s) a key-value
resides on?

N80

0 Say m=7

N32

N45

Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without finger tables or routing
Keyàserver mapping is the “Partitioner”

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

CoordinatorClient

One ring per DC

Data Placement Strategies

•  Replication Strategy: two options:
1.  SimpleStrategy
2.  NetworkTopologyStrategy

1.  SimpleStrategy: uses the Partitioner, of which there are two kinds
1.  RandomPartitioner: Chord-like hash partitioning
2.  ByteOrderedPartitioner: Assigns ranges of keys to servers.

•  Easier for range queries (e.g., Get me all twitter users starting
with [a-b])

2.  NetworkTopologyStrategy: for multi-DC deployments
•  Two replicas per DC
•  Three replicas per DC
•  Per DC

•  First replica placed according to Partitioner
•  Then go clockwise around ring until you hit a different rack

Snitches

•  Maps: IPs to racks and DCs. Configured in cassandra.yaml
config file

•  Some options:
•  SimpleSnitch: Unaware of Topology (Rack-unaware)
•  RackInferring: Assumes topology of network by octet

of server’s IP address
•  101.201.301.401 = x.<DC octet>.<rack

octet>.<node octet>
•  PropertyFileSnitch: uses a config file
•  EC2Snitch: uses EC2.

•  EC2 Region = DC
•  Availability zone = rack

•  Other snitch options available

Writes

•  Need to be lock-free and fast (no reads or disk seeks)
•  Client sends write to one coordinator node in

Cassandra cluster
•  Coordinator may be per-key, or per-client, or

per-query
•  Per-key Coordinator ensures writes for the key

are serialized
•  Coordinator uses Partitioner to send query to all

replica nodes responsible for key
•  When X replicas respond, coordinator returns an

acknowledgement to the client
•  X? We’ll see later.

Writes (2)

•  Always writable: Hinted Handoff mechanism
•  If any replica is down, the coordinator writes to

all other replicas, and keeps the write locally
until down replica comes back up.

•  When all replicas are down, the Coordinator
(front end) buffers writes (for up to a few hours).

•  One ring per datacenter
•  Per-DC coordinator elected to coordinate with

other DCs
•  Election done via Zookeeper, which runs a

Paxos (consensus) variant
•  Paxos: elsewhere in this course

Writes at a replica node

On receiving a write
1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

•  Memtable = In-memory representation of multiple key-
value pairs

•  Cache that can be searched by key
•  Write-back cache as opposed to write-through

Later, when memtable is full or old, flush to disk

•  Data File: An SSTable (Sorted String Table) – list of
key-value pairs, sorted by key

•  Index file: An SSTable of (key, position in data sstable)
pairs

•  And a Bloom filter (for efficient search) – next slide

Bloom Filter

•  Compact way of representing a set of items
•  Checking for existence in set is cheap
•  Some probability of false positives: an item not in set may

check true as being in set
•  Never false negatives

Large Bit Map
0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all hashed
bits.

On check-if-present,
return true if all hashed
bits set.
•  False positives

False positive rate low
•  k=4 hash functions
•  100 items
•  3200 bits
•  FP rate = 0.02%

.

.

Compaction

Data updates accumulate over time and SStables and
logs need to be compacted

•  The process of compaction merges
SSTables, i.e., by merging updates for a key

•  Run periodically and locally at each server

Deletes

Delete: don’t delete item right away
•  Add a tombstone to the log
•  Eventually, when compaction encounters

tombstone it will delete item

Reads

Read: Similar to writes, except
•  Coordinator can contact X replicas (e.g., in same rack)

•  Coordinator sends read to replicas that have
responded quickest in past

•  When X replicas respond, coordinator returns the
latest-timestamped value from among those X

•  (X? We’ll see later.)
•  Coordinator also fetches value from other replicas

•  Checks consistency in the background, initiating a
read repair if any two values are different

•  This mechanism seeks to eventually bring all replicas
up to date

•  A row may be split across multiple SSTables => reads need
to touch multiple SSTables => reads slower than writes
(but still fast)

Membership

•  Any server in cluster could be the coordinator
•  So every server needs to maintain a list of all the

other servers that are currently in the server
•  List needs to be updated automatically as servers

join, leave, and fail

Cluster Membership – Gossip-Style

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3

Protocol:

• Nodes periodically gossip their
membership list

• On receipt, the local membership list is
updated, as shown

• If any heartbeat older than Tfail, node
is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(Remember this?)

Suspicion Mechanisms in Cassandra

•  Suspicion mechanisms to adaptively set the timeout based
on underlying network and failure behavior

•  Accrual detector: Failure Detector outputs a value (PHI)
representing suspicion

•  Apps set an appropriate threshold
•  PHI calculation for a member

•  Inter-arrival times for gossip messages
•  PHI(t) =

 – log(CDF or Probability(t_now – t_last))/log 10
•  PHI basically determines the detection timeout, but

takes into account historical inter-arrival time
variations for gossiped heartbeats

•  In practice, PHI = 5 => 10-15 sec detection time

Cassandra Vs. RDBMS

•  MySQL is one of the most popular (and has been for
a while)

•  On > 50 GB data
•  MySQL

•  Writes 300 ms avg
•  Reads 350 ms avg

•  Cassandra
•  Writes 0.12 ms avg
•  Reads 15 ms avg

•  Orders of magnitude faster
•  What’s the catch? What did we lose?

Mystery of “X”: CAP Theorem

•  Proposed by Eric Brewer (Berkeley)
•  Subsequently proved by Gilbert and Lynch (NUS and

MIT)
•  In a distributed system you can satisfy at
 most 2 out of the 3 guarantees:

1.  Consistency: all nodes see same data at any time,
or reads return latest written value by any client

2.  Availability: the system allows operations all the
time, and operations return quickly

3.  Partition-tolerance: the system continues to work
in spite of network partitions

Why is Availability Important?

•  Availability = Reads/writes complete reliably and
quickly.

•  Measurements have shown that a 500 ms
increase in latency for operations at Amazon.com
or at Google.com can cause a 20% drop in
revenue.

•  At Amazon, each added millisecond of latency
implies a $6M yearly loss.

•  SLAs (Service Level Agreements) written by
providers predominantly deal with latencies
faced by clients.

Why is Consistency Important?

•  Consistency = all nodes see same data at any
time, or reads return latest written value by any
client.

•  When you access your bank or investment
account via multiple clients (laptop, workstation,
phone, tablet), you want the updates done from
one client to be visible to other clients.

•  When thousands of customers are looking to
book a flight, all updates from any client (e.g.,
book a flight) should be accessible by other
clients.

Why is Partition-Tolerance Important?

•  Partitions can happen across datacenters when
the Internet gets disconnected
•  Internet router outages
•  Under-sea cables cut
•  DNS not working

•  Partitions can also occur within a datacenter, e.g.,
a rack switch outage

•  Still desire system to continue functioning
normally under this scenario

CAP Theorem Fallout

•  Since partition-tolerance is essential in today’s cloud

computing systems, CAP theorem implies that a
system has to choose between consistency and
availability

•  Cassandra
•  Eventual (weak) consistency, Availability,

Partition-tolerance
•  Traditional RDBMSs

•  Strong consistency over availability under a
partition

CAP Tradeoff

•  Starting point for
NoSQL Revolution

•  A distributed storage
system can achieve at
most two of C, A, and
P.

•  When partition-
tolerance is important,
you have to choose
between consistency
and availability

Consistency

Partition-tolerance Availability

RDBMSs
(non-replicated)

Cassandra, RIAK,
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner

Eventual Consistency

•  If all writes stop (to a key), then all its values
(replicas) will converge eventually.

•  If writes continue, then system always tries to keep
converging.

•  Moving “wave” of updated values lagging behind the latest values
sent by clients, but always trying to catch up.

•  May still return stale values to clients (e.g., if many
back-to-back writes).

•  But works well when there a few periods of low
writes – system converges quickly.

RDBMS vs. Key-value stores

•  While RDBMS provide ACID
•  Atomicity
•  Consistency
•  Isolation
•  Durability

•  Key-value stores like Cassandra provide BASE
•  Basically Available Soft-state Eventual

Consistency
•  Prefers Availability over Consistency

Back to Cassandra: Mystery of X

•  Cassandra has consistency levels
•  Client is allowed to choose a consistency level for each

operation (read/write)
•  ANY: any server (may not be replica)

•  Fastest: coordinator caches write and replies
quickly to client

•  ALL: all replicas
•  Ensures strong consistency, but slowest

•  ONE: at least one replica
•  Faster than ALL, but cannot tolerate a failure

•  QUORUM: quorum across all replicas in all
datacenters (DCs)

•  What?

Quorums?

In a nutshell:
•  Quorum = majority

•  > 50%
•  Any two quorums

intersect
•  Client 1 does a

write in red quorum
•  Then client 2 does

read in blue
quorum

•  At least one server in blue
quorum returns latest
write

•  Quorums faster than ALL,
but still ensure strong
consistency

Five replicas of a key-value pair

A second
 quorumA quorum

A server

Quorums in Detail

•  Several key-value/NoSQL stores (e.g., Riak and
Cassandra) use quorums.

•  Reads
•  Client specifies value of R (≤ N = total number

of replicas of that key).
•  R = read consistency level.
•  Coordinator waits for R replicas to respond

before sending result to client.
•  In background, coordinator checks for

consistency of remaining (N-R) replicas, and
initiates read repair if needed.

Quorums in Detail (Contd.)

•  Writes come in two flavors
•  Client specifies W (≤ N)
•  W = write consistency level.
•  Client writes new value to W replicas and

returns. Two flavors:
•  Coordinator blocks until quorum is

reached.
•  Asynchronous: Just write and return.

Quorums in Detail (Contd.)

•  R = read replica count, W = write replica count
•  Two necessary conditions:

1.  W+R > N
2.  W > N/2

•  Select values based on application
•  (W=1, R=1): very few writes and reads
•  (W=N, R=1): great for read-heavy workloads
•  (W=N/2+1, R=N/2+1): great for write-heavy

workloads
•  (W=1, R=N): great for write-heavy workloads

with mostly one client writing per key

Cassandra Consistency Levels (Contd.)

•  Client is allowed to choose a consistency level for each operation (read/
write)

•  ANY: any server (may not be replica)
•  Fastest: coordinator may cache write and reply quickly to client

•  ALL: all replicas
•  Slowest, but ensures strong consistency

•  ONE: at least one replica
•  Faster than ALL, and ensures durability without failures

•  QUORUM: quorum across all replicas in all
datacenters (DCs)

•  Global consistency, but still fast
•  LOCAL_QUORUM: quorum in coordinator’s DC

•  Faster: only waits for quorum in first DC client contacts
•  EACH_QUORUM: quorum in every DC

•  Lets each DC do its own quorum: supports hierarchical replies

Types of Consistency

•  Cassandra offers Eventual Consistency
•  Are there other types of weak consistency

models?

Consistency Spectrum

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Eventual Consistency

•  Cassandra offers Eventual Consistency
•  If writes to a key stop, all replicas of key

will converge
•  Originally from Amazon’s Dynamo and

LinkedIn’s Voldemort systems

Strong
(e.g., Sequential)Eventual

More consistency

Faster reads and writes

Spectrum Ends: Strong Consistency Models

•  Linearizability: Each operation by a client is visible (or
available) instantaneously to all other clients

•  Instantaneously in real time
•  Sequential Consistency [Lamport]:

•  "... the result of any execution is the same as if the operations
of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this
sequence in the order specified by its program.

•  After the fact, find a “reasonable” ordering of the operations
(can re-order operations) that obeys sanity (consistency) at all
clients, and across clients.

•  Transaction ACID properties, e.g., newer key-value/NoSQL
stores (sometimes called “NewSQL”)

•  Hyperdex [Cornell]
•  Spanner [Google]
•  Transaction chains [Microsoft Research]

Newer Consistency Models

•  Striving towards strong consistency
•  While still trying to maintain high availability

and partition-tolerance

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Newer Consistency Models (Contd.)

•  Per-key sequential: Per key, all operations have a global
order

•  CRDTs (Commutative Replicated Data Types): Data
structures for which commutated writes give same result
[INRIA, France]

•  E.g., value == int, and only op allowed is +1
•  Effectively, servers don’t need to worry about

consistency

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Newer Consistency Models (Contd.)

•  Red-blue Consistency: Rewrite client transactions to
separate ops into red ops vs. blue ops [MPI-SWS Germany]

•  Blue ops can be executed (commutated) in any order
across DCs

•  Red ops need to be executed in the same order at each
DC

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Newer Consistency Models (Contd.)

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Causal Consistency: Reads must respect partial order based on information flow [Princeton,
CMU]

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return
22 or 33

Time
R(K1) returns 33

R(K2) returns 55
Causality, not messages

Which Consistency Model should you use?

•  Use the lowest consistency (to the left)
consistency model that is “correct” for your
application
•  Gets you fastest availability

Strong
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

HBase

•  Google’s BigTable was first “blob-based” storage
system

•  Yahoo! Open-sourced it à HBase
•  Major Apache project today
•  Facebook uses HBase internally
•  API functions

•  Get/Put(row)
•  Scan(row range, filter) – range queries
•  MultiPut

•  Unlike Cassandra, HBase prefers consistency (over
availability)

HBase Architecture

HDFS

. . .

HRegionServerHRegionServer
Hregion

Store

StoreFile
HFile

StoreFile
HFile

…

MemStore Store

StoreFile
HFile

StoreFile
HFile

…

MemStore

. . .

HLog

. . .

Client HMaster
Zookeeper

Small group of servers running
Zab, a consensus protocol (Paxos-like)

HBase Storage hierarchy

•  HBase Table
•  Split it into multiple regions: replicated across servers

•  ColumnFamily = subset of columns with similar query
patterns

•  One Store per combination of ColumnFamily + region
•  Memstore for each Store: in-memory updates to

Store; flushed to disk when full
•  StoreFiles for each store for each region:

where the data lives
 - HFile

•  HFile
•  SSTable from Google’s BigTable

HFile

Data … Data … Metadata, file info, indices, and trailer

Magic (Key, value) (Key, value) … (Key, value)

 Key Value Row Row Col Family Col Family Col Timestamp Key Value
length length length length Qualifier type

SSN:000-01-2345 Demographic
Information

Ethnicity

HBase Key

Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore
Helps recover from failure by replaying Hlog.

Client

HRegionServer

Log flush

HLog

HRegion

HRegion

.

.

.

(k1, k2, k3, k4)
(k1, k2)

(k3, k4)

Store

StoreFile
HFile

StoreFile
HFile

…

MemStore

Store

StoreFile
HFile

StoreFile
HFile

…

MemStore

.

.

.1. (k1)

2. (k1)

Log Replay

•  After recovery from failure, or upon bootup
(HRegionServer/HMaster)
•  Replay any stale logs (use timestamps to

find out where the database is w.r.t. the logs)
•  Replay: add edits to the MemStore

Cross-Datacenter Replication

•  Single “Master” cluster
•  Other “Slave” clusters replicate the same tables
•  Master cluster synchronously sends HLogs over

to slave clusters
•  Coordination among clusters is via Zookeeper
•  Zookeeper can be used like a file system to store

control information
1. /hbase/replication/state
2. /hbase/replication/peers/<peer cluster number>
3. /hbase/replication/rs/<hlog>

MongoDB: A NoSQL System Installation

•  http://www.mongodb.org/downloads
•  http://docs.mongodb.org/manual/installation
•  mongod --dbpath <path-to-data>
•  Mongo

•  (MongoDB slides adapted from Mainak Ghosh’s
slides)

Data Model

•  Stores data in form of BSON (Binary JavaScript
Object Notation) documents

 {
 name: "travis",
 salary: 30000,
 designation: "Computer Scientist",
 teams: ["front-end", "database"]
 }

•  Group of related documents with a shared
common index is a collection

MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted in ascending order
db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

 Collection Condition Projection Modifier
{salary:25000, …}

{salary:10000, …}

{salary:20000, …}

{salary:2000, …}

{salary:30000, …}

{salary:21000, …}

{salary:5000, …}

{salary:50000, …}

{salary:25000, …}

{salary:20000, …}

{salary:30000, …}

{salary:21000, …}

{salary:50000, …}

{salary:20000, …}

{salary:21000, …}

{salary:25000, …}

{salary:30000, …}

{salary:50000, …}

Insert

Insert a row entry for new employee Sally

db.employee.insert({

 name: "sally",
 salary: 15000,
 designation: "MTS",
 teams: ["cluster-management"]
 })`

Update

All employees with salary greater than 18000 get a designation of Manager

 db.employee.update(
Update Criteria {salary:{$gt:18000}},
Update Action {$set: {designation: "Manager"}},
Update Option {multi: true}

)

Multi-option allows multiple document update

Delete

Remove all employees who earn less than 10000

 db.employee.remove(
Remove Criteria {salary:{$lt:10000}},

)

Can accept a flag to limit the number of documents removed

Typical MongoDB Deployment

•  Data split into chunks, based on
shard key (~ primary key)

•  Either use hash or range-
partitioning

•  Shard: collection of chunks
•  Shard assigned to a replica set
•  Replica set consists of multiple

mongod servers (typically 3
mongod’s)

•  Replica set members are mirrors
of each other

•  One is primary
•  Others are secondaries

•  Routers: mongos server receives
client queries and routes them to
right replica set

•  Config server: Stores collection
level metadata.

Mongod Mongod

mongod

Mongod Mongod Config

Router (mongos)

Router (mongos)

Mongod Mongod mongod

Mongod Mongod mongod

1

5 4

3

2

6

Replica Set

Replication

Secondary

Primary

Secondary Heartbeat

Write Read

Replication

•  Uses an oplog (operation log) for data sync up
•  Oplog maintained at primary, delta

transferred to secondary continuously/every
once in a while

•  When needed, leader Election protocol elects a
master

•  Some mongod servers do not maintain data but
can vote – called as Arbiters

Read Preference

•  Determine where to route read operation
•  Default is primary. Some other options are

•  primary-preferred
•  secondary
•  nearest

•  Helps reduce latency, improve throughput
•  Reads from secondary may fetch stale data

Write Concern

•  Determines the guarantee that MongoDB
provides on the success of a write operation

•  Default is acknowledged (primary returns answer
immediately).
•  Other options are

•  journaled (typically at primary)
•  replica-acknowledged (quorum with a

value of W), etc
•  Weaker write concern implies faster write time

Write operation performance

•  Journaling: Write-ahead logging to an on-disk
journal for durability

•  Indexing: Every write needs to update every
index associated with the collection

Balancing

•  Over time, some chunks may get larger than
others

•  Splitting: Upper bound on chunk size; when hit,
chunk is split

•  Balancing: Migrates chunks among shards if
there is an uneven distribution

Consistency

•  Strongly Consistent: Read Preference is Master
•  Eventually Consistent: Read Preference is Slave

(Secondary)
•  CAP Theorem: Under partition, MongoDB

becomes write unavailable thereby ensuring
consistency

Performance

•  30 – 50x faster than Sql Server 2008 for
writes[1]

•  At least 3x faster for reads[1]
•  MongoDB 2.2.2 offers slower throughput for

different YCSB workloads compared to
Cassandra[2]

[1] http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-
performance-showdown/
[2] http://hyperdex.org/performance/

Summary

•  Traditional Databases (RDBMSs) work with strong
consistency, and offer ACID

•  Modern workloads don’t need such strong guarantees, but
do need fast response times (availability)

•  Unfortunately, CAP theorem
•  Key-value/NoSQL systems offer BASE

•  Eventual consistency, and a variety of other
consistency models striving towards strong consistency

•  We discussed design of
•  Cassandra
•  Hbase
•  MongoDB

Optional: Some more MongoDB
queries

Insert

Insert a row entry for new employee Sally

use records -- Creates a database

db.employee.insert({

 name: "Sally",
 salary: 15000,
 designation: "MTS",
 teams: "cluster-management"
 })

Also can use save instead of insert

Bulk Load

people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy",
"Greg", "Steve", "Kristina", "Katie", "Jeff"];
money = [10000, 5000, 8000, 2000];
position = ["MTS", "Computer Scientist", "Manager", "Director"];
groups = ["cluster-management", "human-resource", "backend",
"ui"];

for(var i=0; i<10000; i++){

 name = people[Math.floor(Math.random()*people.length)];
 salary = money[Math.floor(Math.random()*money.length)];
 designation = position[Math.floor(Math.random()*position.length)];
 teams = groups[Math.floor(Math.random()*groups.length)];
 db.employee.save({name:name, salary:salary,

designation:designation, teams:teams});
}

Query

•  db.employee.find()
•  db.employee.find({name: "Sally"})
•  var cursor = db.employee.find({salary: {$in:

[5000, 2000] } })
•  Use next() to access the rest of the records

Query

•  db.employee.find({name: "Steve", salary: {$lt:
3000} })

•  db.employee.find({ $or: [{ name: "Bill" },
{ salary: { $gt: 9000 } }] })

•  Find records of all managers who earn more than
5000

•  db.employee.find({designation:"Manager",
salary: {$gt: 5000}})

Aggregation Commands

•  db.employee.count()
•  How many employees with name Steve?
•  db.employee.find({name: "Steve"}).count()
•  db.employee.find({name: "Steve"}).skip(10)
•  db.employee.find({name: "Steve"}).limit(10)

Modify

•  Increment salary of all managers by 1000
•  db.employee.update({ designation :

"Manager" }, { $inc : { salary : 1000 } })
•  db.employee.update({ designation :

"Manager" }, { $inc : { salary : 1000 } } ,
{ multi: true })

•  Increment salary of all managers working in
cluster-management group by 5000

•  db.employee.update({ designation : "Manager",
teams: "cluster-management"}, { $inc : { salary :
5000 } } , { multi: true })

Remove

•  db.employee.remove({ name : "Sally" })
•  Remove all Computer Scientist in the ui division
•  db.employee.remove({teams: "ui", designation:

"Computer Scientist"})

