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The Key-value Abstraction 

•  (Business) Key à Value 
•  (twitter.com) tweet id à information about tweet 
•  (amazon.com) item number à information about 

it 
•  (kayak.com) Flight number à information about 

flight, e.g., availability 
•  (yourbank.com) Account number à information 

about it 



The Key-value Abstraction (2) 

•  It’s a dictionary datastructure. 
•  Insert, lookup, and delete by key 
•  E.g., hash table, binary tree 

•  But distributed. 
•  Sound familiar? Remember Distributed Hash 

tables (DHT) in P2P systems? 
•  It’s not surprising that key-value stores reuse 

many techniques from DHTs. 



Isn’t that just a database?  

•  Yes, sort of 
•  Relational Database Management Systems 

(RDBMSs) have been around for ages 
•  MySQL is the most popular among them 
•  Data stored in tables 
•  Schema-based, i.e., structured tables 
•  Each row (data item) in a table has a primary key 

that is unique within that table 
•  Queried using SQL (Structured Query Language) 
•  Supports joins 



Relational Database Example 

Example SQL queries 
1.  SELECT zipcode 
       FROM users 
       WHERE name = “Bob”

2.    SELECT url
       FROM blog
       WHERE id = 3

3.  SELECT users.zipcode, blog.num_posts
       FROM users JOIN blog
       ON users.blog_url = blog.url

user_id  name  zipcode  blog_url   blog_id 
 
101  Alice    12345    alice.net   1 
 
422  Charlie  45783   charlie.com   3 
 
555  Bob      99910   bob.blogspot.com  2 

users table

Primary keys

id url last_updated   num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com     4/2/13 10003

3 charlie.com 6/15/14 7

blog table

Foreign keys



Mismatch with today’s workloads  

•  Data: Large and unstructured 
•  Lots of random reads and writes 
•  Sometimes write-heavy 
•  Foreign keys rarely needed 
•  Joins infrequent 



Needs of Today’s Workloads 

•  Speed 
•  Avoid Single point of Failure (SPoF) 
•  Low TCO (Total cost of operation)  
•  Fewer system administrators 
•  Incremental Scalability 
•  Scale out, not up 

•  What? 



Scale out, not Scale up 

•  Scale up = grow your cluster capacity by replacing with 
more powerful machines 

•  Traditional approach 
•  Not cost-effective, as you’re buying above the sweet 

spot on the price curve 
•  And you need to replace machines often 

•  Scale out = incrementally grow your cluster capacity by 
adding more COTS machines (Components Off the Shelf) 

•  Cheaper 
•  Over a long duration, phase in a few newer (faster) 

machines as you phase out a few older machines 
•  Used by most companies who run datacenters and 

clouds today 



Key-value/NoSQL Data Model 

•  NoSQL = “Not Only SQL” 
•  Necessary API operations: get(key) and put(key, value) 

•  And some extended operations, e.g., “CQL” in 
Cassandra key-value store 

•  Tables 
•  “Column families” in Cassandra, “Table” in HBase, 

“Collection” in MongoDB 
•  Like RDBMS tables, but …  
•  May be unstructured: May not have schemas  

•  Some columns may be missing from some rows 
•  Don’t always support joins or have foreign keys 
•  Can have index tables, just like RDBMSs 



Key-value/NoSQL Data Model  

•  Unstructured 

•  Columns 
Missing from 
some Rows 

•  No schema 
imposed 

•  No foreign 
keys, joins may 
not be 
supported 

user_id  name  zipcode  blog_url  
  

101  Alice    12345    alice.net   
 
422  Charlie   charlie.com  

  
555   99910     bob.blogspot.com

  

users table

id url last_updated  num_posts

1 alice.net 5/2/14 332

2 bob.blogspot.com     10003

3 charlie.com 6/15/14

blog table

Key
Value

Key

Value



Column-Oriented Storage 

NoSQL systems often use column-oriented storage 
•  RDBMSs store an entire row together (on disk or at a 

server) 
•  NoSQL systems typically store a column together (or a 

group of columns).  
•  Entries within a column are indexed and easy to 

locate, given a key (and vice-versa) 
•  Why useful? 

•  Range searches within a column are fast since you 
don’t need to fetch the entire database 

•  E.g., Get me all the blog_ids from the blog table that 
were updated within the past month  

•  Search in the the last_updated column, fetch 
corresponding blog_id column 

•  Don’t need to fetch the other columns 



Next 

Design of a real key-value store, Cassandra. 



Cassandra 

•  A distributed key-value store 
•  Intended to run in a datacenter (and also across DCs) 
•  Originally designed at Facebook 
•  Open-sourced later, today an Apache project 
•  Some of the companies that use Cassandra in their 

production clusters 
•  IBM, Adobe, HP, eBay, Ericsson, Symantec 
•  Twitter, Spotify 
•  PBS Kids 
•  Netflix: uses Cassandra to keep track of your 

current position in the video you’re watching 



Let’s go Inside Cassandra:  
    Key -> Server Mapping 

•  How do you decide which server(s) a key-value 
resides on? 



N80

0 Say m=7 

N32

N45

Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without finger tables or routing 
Keyàserver mapping is the “Partitioner” 

N112

N96

N16

Read/write K13 

Primary replica for
key K13

(Remember this?)

CoordinatorClient

One ring per DC



Data Placement Strategies 

•  Replication Strategy: two options: 
1.  SimpleStrategy 
2.  NetworkTopologyStrategy 

1.  SimpleStrategy: uses the Partitioner, of which there are two kinds 
1.  RandomPartitioner: Chord-like hash partitioning 
2.  ByteOrderedPartitioner: Assigns ranges of keys to servers.  

•  Easier for range queries (e.g., Get me all twitter users starting 
with [a-b]) 

2.  NetworkTopologyStrategy: for multi-DC deployments 
•  Two replicas per DC 
•  Three replicas per DC 
•  Per DC 

•  First replica placed according to Partitioner 
•  Then go clockwise around ring until you hit a different rack 



Snitches 

•  Maps: IPs to racks and DCs. Configured in cassandra.yaml 
config file 

•  Some options: 
•  SimpleSnitch: Unaware of Topology (Rack-unaware) 
•  RackInferring: Assumes topology of network by octet 

of server’s IP address 
•  101.201.301.401 = x.<DC octet>.<rack 

octet>.<node octet> 
•  PropertyFileSnitch: uses a config file 
•  EC2Snitch: uses EC2. 

•  EC2 Region = DC 
•  Availability zone = rack 

•  Other snitch options available 



Writes  

•  Need to be lock-free and fast (no reads or disk seeks) 
•  Client sends write to one coordinator node in 

Cassandra cluster  
•  Coordinator may be per-key, or per-client, or 

per-query 
•  Per-key Coordinator ensures writes for the key 

are serialized 
•  Coordinator uses Partitioner to send query to all 

replica nodes responsible for key 
•  When X replicas respond, coordinator returns an 

acknowledgement to the client 
•  X? We’ll see later. 



Writes (2) 

•  Always writable: Hinted Handoff mechanism 
•  If any replica is down, the coordinator writes to 

all other replicas, and keeps the write locally 
until down replica comes back up. 

•  When all replicas are down, the Coordinator 
(front end) buffers writes (for up to a few hours).  

•  One ring per datacenter 
•  Per-DC coordinator elected to coordinate with 

other DCs 
•  Election done via Zookeeper, which runs a 

Paxos (consensus) variant 
•  Paxos: elsewhere in this course 



Writes at a replica node 

On receiving a write 
1. Log it in disk commit log (for failure recovery) 
2. Make changes to appropriate memtables 

•  Memtable = In-memory representation of multiple key-
value pairs 

•  Cache that can be searched by key 
•  Write-back cache as opposed to write-through 

 
Later, when memtable is full or old, flush to disk 

•  Data File: An SSTable (Sorted String Table) – list of 
key-value pairs, sorted by key 

•  Index file: An SSTable of (key, position in data sstable) 
pairs 

•  And a Bloom filter (for efficient search) – next slide 
 



Bloom Filter 

•  Compact way of representing a set of items 
•  Checking for existence in set is cheap 
•  Some probability of false positives: an item not in set may 

check true as being in set 
•  Never false negatives 

Large Bit Map
0
1
2
3

69

127

111

Key-K
Hash1

Hash2

Hashk

On insert, set all hashed 
bits. 
 
On check-if-present,  
return true if all hashed 
bits set. 
•  False positives 

False positive rate low 
•  k=4 hash functions 
•  100 items 
•   3200 bits 
•  FP rate = 0.02% 

.

.



Compaction 

 
Data updates accumulate over time and SStables and 
logs need to be compacted 

•  The process of compaction merges 
SSTables, i.e., by merging updates for a key 

•  Run periodically and locally at each server 
 



Deletes 

Delete: don’t delete item right away 
•  Add a tombstone to the log  
•  Eventually, when compaction encounters 

tombstone it will delete item 



Reads  

Read: Similar to writes, except 
•  Coordinator can contact X replicas (e.g., in same rack) 

•  Coordinator sends read to replicas that have 
responded quickest in past 

•  When X replicas respond, coordinator returns the 
latest-timestamped value from among those X 

•  (X? We’ll see later.) 
•  Coordinator also fetches value from other replicas 

•  Checks consistency in the background, initiating a 
read repair if any two values are different 

•  This mechanism seeks to eventually bring all replicas 
up to date 

•  A row may be split across multiple SSTables => reads need 
to touch multiple SSTables => reads slower than writes 
(but still fast) 



Membership 

•  Any server in cluster could be the coordinator 
•  So every server needs to maintain a list of all the 

other servers that are currently in the server 
•  List needs to be updated automatically as servers 

join, leave, and fail 



Cluster Membership – Gossip-Style  

1 

1 10120 66 

2 10103 62 

3 10098 63 

4 10111 65 

2 

4 
3 

Protocol:  

• Nodes periodically gossip their 
membership list 

• On receipt, the local membership list is 
updated, as shown 

• If any heartbeat older than Tfail, node 
is marked as failed 

1 10118 64 

2 10110 64 

3 10090 58 

4 10111 65 

1 10120 70 

2 10110 64 

3 10098 70 

4 10111 65 

Current time : 70 at node 2 

(asynchronous clocks) 

Address 
Heartbeat Counter 

Time (local) 

Cassandra uses gossip-based cluster membership 

(Remember this?)



Suspicion Mechanisms in Cassandra 

•  Suspicion mechanisms to adaptively set the timeout based 
on underlying network and failure behavior 

•  Accrual detector: Failure Detector outputs a value (PHI) 
representing suspicion 

•  Apps set an appropriate threshold 
•  PHI calculation for a member 

•  Inter-arrival times for gossip messages 
•  PHI(t) =  

 – log(CDF or Probability(t_now – t_last))/log 10 
•  PHI basically determines the detection timeout, but 

takes into account historical inter-arrival time 
variations for gossiped heartbeats 

•  In practice, PHI = 5 => 10-15 sec detection time 



Cassandra Vs. RDBMS 

•  MySQL is one of the most popular (and has been for 
a while) 

•  On > 50 GB data 
•  MySQL  

•  Writes 300 ms avg 
•  Reads 350 ms avg 

•  Cassandra  
•  Writes 0.12 ms avg 
•  Reads 15 ms avg 

•  Orders of magnitude faster 
•  What’s the catch? What did we lose? 



Mystery of “X”: CAP Theorem 

•  Proposed by Eric Brewer (Berkeley) 
•  Subsequently proved by Gilbert and Lynch (NUS and 

MIT) 
•  In a distributed system you can satisfy at  
    most 2 out of the 3 guarantees: 

1.  Consistency: all nodes see same data at any time, 
or reads return latest written value by any client 

2.  Availability: the system allows operations all the 
time, and operations return quickly 

3.  Partition-tolerance: the system continues to work 
in spite of network partitions 



Why is Availability Important?  

•  Availability = Reads/writes complete reliably and 
quickly. 

•  Measurements have shown that a 500 ms 
increase in latency for operations at Amazon.com 
or at Google.com can cause a 20% drop in 
revenue.  

•  At Amazon, each added millisecond of latency 
implies a $6M yearly loss. 

•  SLAs (Service Level Agreements) written by 
providers predominantly deal with latencies 
faced by clients.   



Why is Consistency Important? 

•  Consistency = all nodes see same data at any 
time, or reads return latest written value by any 
client. 

•  When you access your bank or investment 
account via multiple clients (laptop, workstation, 
phone, tablet), you want the updates done from 
one client to be visible to other clients. 

•  When thousands of customers are looking to 
book a flight, all updates from any client (e.g., 
book a flight) should be accessible by other 
clients. 



Why is Partition-Tolerance Important? 

•  Partitions can happen across datacenters when 
the Internet gets disconnected 
•  Internet router outages 
•  Under-sea cables cut 
•  DNS not working 

•  Partitions can also occur within a datacenter, e.g., 
a rack switch outage 

•  Still desire system to continue functioning 
normally under this scenario 



CAP Theorem Fallout 

 
•  Since partition-tolerance is essential in today’s cloud 

computing systems, CAP theorem implies that a 
system has to choose between consistency and 
availability 

•  Cassandra 
•  Eventual (weak) consistency, Availability, 

Partition-tolerance  
•  Traditional RDBMSs 

•  Strong consistency over availability under a 
partition 

 



CAP Tradeoff 

•  Starting point for 
NoSQL Revolution 

•  A distributed storage 
system can achieve at 
most two of C, A, and 
P. 

•  When partition-
tolerance is important, 
you have to choose 
between consistency 
and availability 

Consistency

Partition-tolerance Availability

RDBMSs 
(non-replicated)

Cassandra, RIAK, 
Dynamo, Voldemort

HBase, HyperTable,
BigTable, Spanner



Eventual Consistency  

•  If all writes stop (to a key), then all its values 
(replicas) will converge eventually. 

•  If writes continue, then system always tries to keep 
converging. 

•  Moving “wave” of updated values lagging behind the latest values 
sent by clients, but always trying to catch up. 

•  May still return stale values to clients (e.g., if many 
back-to-back writes). 

•  But works well when there a few periods of low 
writes – system converges quickly. 



RDBMS vs. Key-value stores 

•  While RDBMS provide ACID  
•  Atomicity  
•  Consistency  
•  Isolation 
•  Durability 

•  Key-value stores like Cassandra provide BASE 
•  Basically Available Soft-state Eventual 

Consistency 
•  Prefers Availability over Consistency 



Back to Cassandra: Mystery of X 

•  Cassandra has consistency levels 
•  Client is allowed to choose a consistency level for each 

operation (read/write) 
•  ANY: any server (may not be replica) 

•  Fastest: coordinator caches write and replies 
quickly to client 

•  ALL: all replicas 
•  Ensures strong consistency, but slowest 

•  ONE: at least one replica 
•  Faster than ALL, but cannot tolerate a failure 

•  QUORUM: quorum across all replicas in all 
datacenters (DCs) 

•  What? 



Quorums? 

In a nutshell: 
•  Quorum = majority  

•  > 50% 
•  Any two quorums 

intersect 
•  Client 1 does a 

write in red quorum  
•  Then client 2 does 

read in blue 
quorum 

•  At least one server in blue 
quorum returns latest 
write 

•  Quorums faster than ALL, 
but still ensure strong 
consistency 

Five replicas of a key-value pair

A second 
   quorumA quorum

A server



Quorums in Detail 

•  Several key-value/NoSQL stores (e.g., Riak and 
Cassandra) use quorums. 

•  Reads 
•  Client specifies value of R (≤ N = total number 

of replicas of that key).  
•  R = read consistency level. 
•  Coordinator waits for R replicas to respond 

before sending result to client.  
•  In background, coordinator checks for 

consistency of remaining (N-R) replicas, and 
initiates read repair if needed. 

 



Quorums in Detail (Contd.) 

•  Writes come in two flavors 
•  Client specifies W (≤ N) 
•  W = write consistency level. 
•  Client writes new value to W replicas and 

returns. Two flavors: 
•  Coordinator blocks until quorum is 

reached. 
•  Asynchronous: Just write and return. 



Quorums in Detail (Contd.) 

•  R = read replica count, W = write replica count 
•  Two necessary conditions: 

1.  W+R > N 
2.  W > N/2 

•  Select values based on application  
•  (W=1, R=1): very few writes and reads 
•  (W=N, R=1): great for read-heavy workloads 
•  (W=N/2+1, R=N/2+1): great for write-heavy 

workloads 
•  (W=1, R=N): great for write-heavy workloads 

with mostly one client writing per key 



Cassandra Consistency Levels (Contd.) 

•  Client is allowed to choose a consistency level for each operation (read/
write) 

•  ANY: any server (may not be replica) 
•  Fastest: coordinator may cache write and reply quickly to client 

•  ALL: all replicas 
•  Slowest, but ensures strong consistency 

•  ONE: at least one replica 
•  Faster than ALL, and ensures durability without failures 

•  QUORUM: quorum across all replicas in all 
datacenters (DCs) 

•  Global consistency, but still fast 
•  LOCAL_QUORUM: quorum in coordinator’s DC 

•  Faster: only waits for quorum in first DC client contacts 
•  EACH_QUORUM: quorum in every DC 

•  Lets each DC do its own quorum: supports hierarchical replies 



Types of Consistency 

•  Cassandra offers Eventual Consistency 
•  Are there other types of weak consistency 

models? 



Consistency Spectrum 

Strong 
(e.g., Sequential)Eventual

More consistency

Faster reads and writes



Spectrum Ends: Eventual Consistency 

•  Cassandra offers Eventual Consistency 
•  If writes to a key stop, all replicas of key 

will converge 
•  Originally from Amazon’s Dynamo and 

LinkedIn’s Voldemort systems 

Strong 
(e.g., Sequential)Eventual

More consistency

Faster reads and writes



Spectrum Ends: Strong Consistency Models 

•  Linearizability: Each operation by a client is visible (or 
available) instantaneously to all other clients 

•  Instantaneously in real time 
•  Sequential Consistency [Lamport]: 

•  "... the result of any execution is the same as if the operations 
of all the processors were executed in some sequential order, 
and the operations of each individual processor appear in this 
sequence in the order specified by its program. 

•  After the fact, find a “reasonable” ordering of the operations 
(can re-order operations) that obeys sanity (consistency) at all 
clients, and across clients. 

•  Transaction ACID properties, e.g., newer key-value/NoSQL 
stores (sometimes called “NewSQL”) 

•  Hyperdex [Cornell] 
•  Spanner [Google] 
•  Transaction chains [Microsoft Research] 



Newer Consistency Models 

•  Striving towards strong consistency 
•  While still trying to maintain high availability 

and partition-tolerance 

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic



Newer Consistency Models (Contd.) 

•  Per-key sequential: Per key, all operations have a global 
order 

•  CRDTs (Commutative Replicated Data Types): Data 
structures for which commutated writes give same result 
[INRIA, France] 

•  E.g., value == int, and only op allowed is +1 
•  Effectively, servers don’t need to worry about 

consistency 

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic



Newer Consistency Models (Contd.) 

•  Red-blue Consistency: Rewrite client transactions to 
separate ops into red ops vs. blue ops [MPI-SWS Germany] 

•  Blue ops can be executed (commutated) in any order 
across DCs 

•  Red ops need to be executed in the same order at each 
DC 

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic



Newer Consistency Models (Contd.) 

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Causal Consistency: Reads must respect partial order based on information flow [Princeton, 
CMU] 

Client A

Client B

Client C

W(K1, 33)

W(K2, 55)

R(K1) must return 33W(K1, 22) R(K1) may return 
22 or 33

Time
R(K1) returns 33

R(K2) returns 55
Causality, not messages



Which Consistency Model should you use? 

•  Use the lowest consistency (to the left) 
consistency model that is “correct” for your 
application 
•  Gets you fastest availability 

Strong 
(e.g., Sequential)Eventual

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic



HBase 

•  Google’s BigTable was first “blob-based” storage 
system 

•  Yahoo! Open-sourced it à  HBase 
•  Major Apache project today 
•  Facebook uses HBase internally 
•  API functions 

•  Get/Put(row) 
•  Scan(row range, filter) – range queries 
•  MultiPut 

•  Unlike Cassandra, HBase prefers consistency (over 
availability) 



HBase Architecture 

HDFS

. . .

HRegionServerHRegionServer
Hregion

Store   

StoreFile
HFile

StoreFile
HFile

…

MemStore Store   

StoreFile
HFile

StoreFile
HFile

…

MemStore

. . .

HLog

. . .

Client HMaster
Zookeeper

Small group of servers running
Zab, a consensus protocol (Paxos-like)



HBase Storage hierarchy 

•  HBase Table 
•  Split it into multiple regions: replicated across servers 

•  ColumnFamily  = subset of columns with similar query 
patterns 

•  One Store per combination of ColumnFamily + region 
•  Memstore for each Store: in-memory updates to 

Store; flushed to disk when full 
•  StoreFiles for each store for each region: 

where the data lives 
        - HFile 
 

•  HFile 
•  SSTable from Google’s BigTable 

 
 



HFile 

Data … Data …  Metadata, file info, indices, and trailer

Magic      (Key, value)  (Key, value)                        … (Key, value)

  Key          Value    Row         Row     Col Family    Col Family    Col            Timestamp       Key   Value
length        length   length                     length                              Qualifier                            type

SSN:000-01-2345 Demographic
Information

Ethnicity

HBase Key



Strong Consistency: HBase Write-Ahead Log 

Write to HLog before writing to MemStore
Helps recover from failure by replaying Hlog.

Client

HRegionServer

Log flush

HLog

HRegion

HRegion

.

.

.

(k1, k2, k3, k4)
(k1, k2)

(k3, k4)

Store   

StoreFile
HFile

StoreFile
HFile

…

MemStore

Store   

StoreFile
HFile

StoreFile
HFile

…

MemStore

.

.

.1. (k1)

2. (k1)



Log Replay 

•  After recovery from failure, or upon bootup 
(HRegionServer/HMaster) 
•  Replay any stale logs (use timestamps to 

find out where the database is w.r.t. the logs) 
•  Replay: add edits to the MemStore 



Cross-Datacenter Replication 

•  Single “Master” cluster 
•  Other “Slave” clusters replicate the same tables 
•  Master cluster synchronously sends HLogs over 

to slave clusters 
•  Coordination among clusters is via Zookeeper 
•  Zookeeper can be used like a file system to store 

control information 
1. /hbase/replication/state 
2. /hbase/replication/peers/<peer cluster number> 
3. /hbase/replication/rs/<hlog> 



MongoDB: A NoSQL System Installation 

•  http://www.mongodb.org/downloads 
•  http://docs.mongodb.org/manual/installation 
•  mongod --dbpath <path-to-data> 
•  Mongo 

•  (MongoDB slides adapted from Mainak Ghosh’s 
slides) 



Data Model 

•  Stores data in form of BSON (Binary JavaScript 
Object Notation) documents 

 { 
  name: "travis", 
  salary: 30000, 
  designation: "Computer Scientist", 
  teams: [ "front-end",  "database" ] 
 } 

•  Group of related documents with a shared 
common index is a collection 



MongoDB: Typical Query 

Query all employee names with salary greater than 18000 sorted in ascending order 
db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1}) 

                Collection              Condition        Projection        Modifier 
{salary:25000, …} 

{salary:10000, …} 

{salary:20000, …} 

{salary:2000, …} 

{salary:30000, …} 

{salary:21000, …} 

{salary:5000, …} 

{salary:50000, …} 

{salary:25000, …} 

{salary:20000, …} 

{salary:30000, …} 

{salary:21000, …} 

{salary:50000, …} 

{salary:20000, …} 

{salary:21000, …} 

{salary:25000, …} 

{salary:30000, …} 

{salary:50000, …} 



Insert 

Insert a row entry for new employee Sally 
 
db.employee.insert({ 

  name: "sally", 
  salary: 15000, 
  designation: "MTS", 
  teams: [ "cluster-management" ] 
  })` 



Update 

All employees with salary greater than 18000 get a designation of Manager 
 

        db.employee.update( 
Update Criteria   {salary:{$gt:18000}}, 
Update Action   {$set: {designation: "Manager"}}, 
Update Option   {multi: true} 

        ) 
 
Multi-option allows multiple document update 



Delete 

Remove all employees who earn less than 10000 
 

   db.employee.remove( 
Remove Criteria   {salary:{$lt:10000}}, 

   ) 
 
Can accept a flag to limit the number of documents removed 



Typical MongoDB Deployment 

•  Data split into chunks, based on 
shard key (~ primary key) 

•  Either use hash or range-
partitioning 

•  Shard: collection of chunks 
•  Shard assigned to a replica set  
•  Replica set consists of multiple 

mongod servers (typically 3 
mongod’s) 

•  Replica set members are mirrors 
of each other 

•  One is primary 
•  Others are secondaries 

•  Routers: mongos server receives 
client queries and routes them to 
right replica set 

•  Config server: Stores collection 
level metadata. 

Mongod Mongod 

 

mongod 

 

Mongod Mongod Config 

Router (mongos) 

 

Router (mongos) 

 

Mongod Mongod mongod 

Mongod Mongod mongod 

1 

5 4 

3 

2 
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Replication 

•  Uses an oplog (operation log) for data sync up 
•  Oplog maintained at primary, delta 

transferred to secondary continuously/every 
once in a while 

•  When needed, leader Election protocol elects a 
master 

•  Some mongod servers do not maintain data but 
can vote – called as Arbiters 



Read Preference 

•  Determine where to route read operation 
•  Default is primary. Some other options are  

•  primary-preferred 
•  secondary 
•  nearest 

•  Helps reduce latency, improve throughput 
•  Reads from secondary may fetch stale data 



Write Concern 

•  Determines the guarantee that MongoDB 
provides on the success of a write operation 

•  Default is acknowledged (primary returns answer 
immediately).  
•  Other options are  

•  journaled (typically at primary) 
•  replica-acknowledged (quorum with a 

value of W), etc 
•  Weaker write concern implies faster write time 



Write operation performance 

•  Journaling: Write-ahead logging to an on-disk 
journal for durability 

•  Indexing: Every write needs to update every 
index associated with the collection 



Balancing 

•  Over time, some chunks may get larger than 
others 

•  Splitting: Upper bound on chunk size; when hit, 
chunk is split 

•  Balancing: Migrates chunks among shards if 
there is an uneven distribution 



Consistency 

•  Strongly Consistent: Read Preference is Master 
•  Eventually Consistent: Read Preference is Slave 

(Secondary) 
•  CAP Theorem: Under partition, MongoDB 

becomes write unavailable thereby ensuring 
consistency 



Performance 

•  30 – 50x faster than Sql Server 2008 for 
writes[1] 

•  At least 3x faster for reads[1] 
•  MongoDB 2.2.2 offers slower throughput for 

different YCSB workloads compared to 
Cassandra[2] 

 
[1] http://blog.michaelckennedy.net/2010/04/29/mongodb-vs-sql-server-2008-
performance-showdown/ 
[2] http://hyperdex.org/performance/ 
 



Summary 

•  Traditional Databases (RDBMSs) work with strong 
consistency, and offer ACID 

•  Modern workloads don’t need such strong guarantees, but 
do need fast response times (availability) 

•  Unfortunately, CAP theorem 
•  Key-value/NoSQL systems offer BASE 

•  Eventual consistency, and a variety of other 
consistency models striving towards strong consistency 

•  We discussed design of 
•  Cassandra 
•  Hbase 
•  MongoDB 

 



Optional: Some more MongoDB 
queries 



Insert 

Insert a row entry for new employee Sally 
 
use records   -- Creates a database 
 
db.employee.insert({ 

  name: "Sally", 
  salary: 15000, 
  designation: "MTS", 
  teams: "cluster-management" 
  }) 

 
Also can use save instead of insert 



Bulk Load 

people = ["Marc", "Bill", "George", "Eliot", "Matt", "Trey", "Tracy", 
"Greg", "Steve", "Kristina", "Katie", "Jeff"]; 
money = [10000, 5000, 8000, 2000]; 
position = ["MTS", "Computer Scientist", "Manager", "Director"]; 
groups = ["cluster-management", "human-resource", "backend", 
"ui"]; 
 
for(var i=0; i<10000; i++){ 

 name = people[Math.floor(Math.random()*people.length)]; 
 salary = money[Math.floor(Math.random()*money.length)]; 
 designation = position[Math.floor(Math.random()*position.length)]; 
 teams = groups[Math.floor(Math.random()*groups.length)]; 
 db.employee.save({name:name, salary:salary, 

designation:designation, teams:teams}); 
} 



Query 

•  db.employee.find() 
•  db.employee.find({name: "Sally"}) 
•  var cursor = db.employee.find({salary: {$in: 

[5000, 2000] } } ) 
•  Use next() to access the rest of the records 



Query 

•  db.employee.find({name: "Steve", salary: {$lt: 
3000} } ) 

•  db.employee.find( { $or: [ { name: "Bill" }, 
{ salary: { $gt: 9000 } } ] } ) 

•  Find records of all managers who earn more than 
5000 

•  db.employee.find({designation:"Manager", 
salary: {$gt: 5000}}) 



Aggregation Commands 

•  db.employee.count() 
•  How many employees with name Steve? 
•  db.employee.find({name: "Steve"}).count() 
•  db.employee.find({name: "Steve"}).skip(10) 
•  db.employee.find({name: "Steve"}).limit(10) 



Modify 

•  Increment salary of all managers by 1000 
•  db.employee.update( { designation : 

"Manager" }, { $inc : { salary : 1000 } } ) 
•  db.employee.update( { designation : 

"Manager" }, { $inc : { salary : 1000 } } , 
{ multi: true } ) 

•  Increment salary of all managers working in 
cluster-management group by 5000 

•  db.employee.update( { designation : "Manager", 
teams: "cluster-management"}, { $inc : { salary : 
5000 } } , { multi: true } ) 



Remove 

•  db.employee.remove( { name : "Sally" } ) 
•  Remove all Computer Scientist in the ui division 
•  db.employee.remove( {teams: "ui", designation: 

"Computer Scientist"} ) 


