
Lecture 14-1!

CS 425 / ECE 428 !
Distributed Systems!

Fall 2014!

Indranil Gupta (Indy)!
Lecture 14: Networking and

Routing!

Lecture 14-2!

Our Distributed System Definition!

 A distributed system is a collection of entities, each
of which is autonomous, programmable,
asynchronous and failure-prone, and
communicating through an unreliable
communication medium.

•  Our interest in distributed systems involves

–  design and implementation, maintenance, study, algorithmics

•  Entity=a process on a device (PC, PDA)
•  Communication Medium=Wired or wireless network

Focus of this lecture!

Lecture 14-3!

So far…!

•  Abstract distributed system – collection of
processes over a communication medium

•  Protocols/algorithms for synchronization,
snapshots, multicast, election, mutual exclusion,
failure detectors, p2p, Hadoop

•  Intended to work in any distributed group of
processes
1.  E.g., Group of processes on computer hosts
2.  E.g., Group of processes on mobile devices

•  For most of this course, we’ll focus on (1):
computer hosts over the Internet

Lecture 14-4!
The Internet (Internet Mapping Project, color coded by ISPs)

PCs,routers,
switches…
=nodes

links=
edges

Lecture 14-5!

Internet 5-Layer Networking Stack!

Messages (UDP) or Streams (TCP)	

Application	

Transport	

Internet	

UDP or TCP packets	

IP datagrams	

Network-specific frames	

Message	

Layers	

Underlying network	

Data Link Layer!

This is where all of our distributed algorithms/techniques !
run!

Lecture 14-6!

Routing Algorithms !
v  Nodes connected in some topology. Routing algorithm runs at

network layer in each node.
v  Goal of routing algorithm:

q given the destination IP address in packet, determine the “next hop”
q thus determine the route for each packet as it travels through the net
q dynamically update routing information to reflect failures, changes (e.g.,

router joins and leaves) and congestion (overloaded router)

v  Two approaches:
v Distance-vector (e.g., RIP)

v Every node knows, for each possible destination LAN, the next-hop
v Link-state (e.g., OSPF)

v Every node knows status of every “link” in the network
In both, information maintained as a table
Tables updated either
v Proactively – periodically, or
v Reactively – when a neighbor/some link status changes

NETWORK/INTERNET LAYER!

Lecture 14-7!

Distance Vector Routing!

•  Also termed as distributed Bellman-Ford
algorithm or Ford-Fulkerson algorithm, included
in RIP (Routing Information Protocol), AppleTalk,
and Cisco routers.

–  Each node/router maintains a table indexed by each
destination node. Entry gives (best known distance to
destination, best next-hop for destination)

–  Once every T seconds, each router sends to each neighbor its
own entire table. Neighbor uses this to update its own table.
(proactive)

Lecture 14-8!

Distance Vector Routing !

A B

D E

C

Hosts
or
LANs!

Routers!

1

3

6

4
5

2
To Link Cost
B 1 1
C 1 2
D 3 1
E 1 2 !

A !local !

To Link Cost
A 2 2
B 2 1
D 5 2
E 5 1!

C !local !

Routing
Table for A!

Routing
Table for C!

To Link Cost
A 1 1
C 2 1
D 4 2
E 4 1!

B !local ! Routing
Table for B!

Link number (all links have cost=1)!

Lecture 14-9!

Distance Vector Routing: Node J!

+, then min across !
 neighbors!

Costs only (next hop omitted)!

Lecture 14-10!

Pseudo-Code for RIP!

Send: Each t seconds or when Tl changes, send Tl on each non-faulty
outgoing link.	

Receive: Whenever a routing table Tr is received on link n:	

for all rows Rr in Tr {	

if (Rr.link not equal n) {	

Rr.cost = Rr.cost + 1;	

Rr.link = n;	

if (Rr.destination is not in Tl) add Rr to Tl; 	

 // add new destination to Tl	

else for all rows Rl in Tl {	

if (Rr.destination = Rl.destination and 	

	

(Rr.cost < Rl.cost or Rl.link = n)) Rl = Rr;	

// Rr.cost < Rl.cost : remote node has better route	

// Rl.link = n : remote node is more authoritative	

}	

}	

}	

Lecture 14-11!

Link State Routing!

•  Each router must
1.  Discover its neighbors and learn their network addresses

–  When a router is booted up, it learns who its neighbors
are by sending a special Hello packet on each point-to-
point link.

–  The router on the other end sends back a reply.
2.  Measure the delay or cost to each of its neighbors

–  A router sends a special Echo packet over the link that
the other end sends back immediately. By measuring the
round-trip time, the sending router gets an RTT estimate.

3.  Construct a packet telling all it has just learned.
–  Broadcast this packet

Lecture 14-12!

Link State Routing!

•  A router broadcasts a link-state-advertisement (LSA) packet
after booting, as well as periodically (or upon topology
change). Packet forwarded only once, TTL-restricted

•  Initial TTL is very high, since need it to get to every router

Lecture 14-13!

Link State Routing!

4.  Broadcast the LSA packet to all other routers.
•  Each packet contains a sequence number that is incremented for

each new LSA packet sent by that source router.
•  Each router keeps track of all the (source router, sequence) pairs it

sees. When a new LSA packet comes in, it is checked against these
pairs. If the received packet is new, it is forwarded on all the links
except the one it arrived on. Old LSA packets are dropped.

•  The age of each packet, being stored after reception, is decremented
once per time unit. When the age hits zero, the information is
discarded. Initial age = high. Such state is often called soft state.

5.  For routing a packet, since the source knows the entire
network graph, it simply computes the shortest path
(actual sequence of nodes) locally using the Dijkstra’s
algorithm. It can include the path in the packet, and
intermediate nodes simply follow this route to decide their
next hop for the packet.

Lecture 14-14!

Transport Layer =Transmission Control  
! ! ! ! ! ! !Protocol !

•  Function 0 – provide an application with a connection-
oriented view of the network (IP is connectionless)

•  Function 1 (Message decomposition and reassembly):
Breaks messages into packets at the transmitting end and
reassembles packets into messages at the receiving end.

–  E.g., using identification and fragment offset fields in IPv4 header
•  Function 2 (Multiplexing and demultiplexing): Multiplexes

several lower-rate sessions, all from the same source and
all going to the same destination, into one session at the
network layer.

•  Function 3 (Reliable communication): Provides reliability to
the application by acks + retransmissions in an end to end
manner

•  Function 4 (End-to-end congestion/flow control): Reduces
rate at which data is sent when congestion is detected in
the network. (TCP-friendliness)

•  Function 5 (Ordering): Of packets within a stream -- FIFO
•  All these functionalities are a part of TCP.

TRANSPORT LAYER!

Lecture 14-15!

DNS: Domain Name System!

People: many identifiers:
–  Address: Mailing address,

email address, telephone
number

–  Name: E.g., John Smith

Internet hosts, routers:
–  Address: IP address (32/64

bit) - used for addressing
datagrams

–  Name: URL e.g.,
sal.cs.uiuc.edu – human-
readable format

Q: given a resource name,
how does a client find out
the IP address of the
service/server?

Domain Name System:
•  distributed database

implemented in a hierarchy of
many name servers

•  application-layer protocol that
is responsible for resolving
names (address/name
translation)

Lecture 14-16!

DNS: Domain Name System!

People: many identifiers:
–  Address: Mailing address,

email address, telephone
number

–  Name: E.g., John Smith

Internet hosts, routers:
–  Address: IP address (32/64

bit) - used for addressing
datagrams

–  Name: URL e.g.,
sal.cs.uiuc.edu – human-
readable format

Name: human-readable string
Address: machine-readable

string

Name Resolution: Name !
Address

E.g.,: given a resource name,
how does a client find out the
IP address of the service/
server

Lecture 14-17!

DNS: Domain Name System!

People: many identifiers:
–  Address: Mailing address,

email address, telephone
number

–  Name: E.g., John Smith

Internet hosts, routers:
–  Address: IP address (32/64

bit) - used for addressing
datagrams

–  Name: URL e.g.,
sal.cs.uiuc.edu – human-
readable format

Q: given a resource name,
how does a client find out
the IP address of the
service/server?

Domain Name System:
•  distributed database

implemented in a hierarchy of
many name servers

•  application-layer protocol that
is responsible for resolving
names (address/name
translation)

Lecture 14-18!

DNS Name Servers!

Alternative
•  no single server has all name-

to-IP address mappings
•  Hierarchy of name servers
authoritative name servers:

–  for a resource, definitively stores
the mapped IP address for that
resource

local name servers:
–  each institution/company/ISP

owns a local (default) name server
–  Receives DNS queries from host
–  Caches recently seen

name!address mappings, and
can answer queries quickly

Why not have a central DNS
server?

•  single point of failure
•  traffic volume
•  may be far
•  maintenance difficult

Doesn’t scale!

 (WWW contains several billion
pages today)

Lecture 14-19!

DNS: Root Name Servers!

•  contacted by local name
server that cannot
resolve query

•  root name server:
–  contacts authoritative

name server if name
mapping not known

–  gets mapping
–  returns mapping to local

name server
•  ~ 13 root name servers

worldwide (as of ‘12)

Lecture 14-20!

Simple DNS Example!

host surf.eurecom.fr
wants IP address of
dragon.cs.uiuc.edu

1. Contacts its local DNS
server, dns.eurecom.fr

2. dns.eurecom.fr contacts
root name server, if
necessary

3. root name server contacts
authoritative name server,
dns.cs.uiuc.edu, if
necessary

Answer returned by first server that
is caching the mapping tuple

requesting host
surf.eurecom.fr

dragon.cs.uiuc.edu

root name server

authoritative name server
dns.cs.uiuc.edu

local name server
dns.eurecom.fr

1

2
3

4
5

6

Lecture 14-21!

DNS Example!

Root name server:
•  may not know the

authoritative name
server

•  may know intermediate
name server: whom to
contact to find
authoritative name
server

•  Server Hierarchy
parallels URL hierarchy
 .

 .edu .com .mil …

uiuc.edu mit.edu…

requesting host
surf.eurecom.fr

dragon.cs.uiuc.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4 5

6

authoritative name server
dns.cs.uiuc.edu

intermediate name server
dns.uiuc.edu

7

8

Lecture 14-22!

DNS: Iterated Queries!

recursive query:
•  puts burden of name

resolution on servers
along the way

•  may fail if a server does
not know next server to
contact, or if
intermediate server fails

iterated query:
•  contacted server replies

with name of server to
querying server

•  “I don’t know this
resource name, but ask
this other server”

•  takes longer (more
longer replies) but
gives client more
control

requesting host
surf.eurecom.fr

dragon.cs.uiuc.edu

root name server

local name server
dns.eurecom.fr

1

2
3

4

5 6

authoritative name server
dns.cs.uiuc.edu

intermediate name server
dns.uiuc.edu

7

8

iterated query

Lecture 14-23!

DNS: Caching and Updating Records!

•  Once (any) name server learns mapping, it caches
mapping

–  cache entries timeout (disappear) after some time
•  Update/notify mechanisms: insert new DNS entries

–  RFC 2136
–  http://www.ietf.org/html.charters/dnsind-charter.html
–  Akamai/CDNs used this extensively to redirect HTTP requests to

nearby caching servers

Lecture 14-24!

Summary!

•  Midterm next Tuesday October 14th
–  Location: Here! (1320 DCL)
–  Syllabus: Lectures 1-12, HWs1-2, MP1.
–  Closed book, closed notes. Calculators ok. NO cheatsheets or

cellphones or devices.
1. Multiple choice questions
2. Big problems: like HW problems, either design or application

•  Practice midterm posted on Website
(Assignments page) – no solutions will be posted

–  Please use our office hours!

Lecture 14-25!

Backup Slides (Not Covered)!

Lecture 14-26!

ARP: Address Resolution Protocol between  
IP and Underlying Networks!

•  Most hosts are attached to a LAN by an interface
board that only understands LAN addresses. For
example, every Ethernet board is equipped with a
globally unique 48-bit Ethernet address.

•  The boards send and receive frames based on 48-
bit Ethernet addresses. They know nothing about
the 32-bit IP addresses.

•  Address Resolution Protocol (ARP) maps the IP
addresses onto data link layer addresses (e.g.,
Ethernet).

DATA LINK LAYER!

Lecture 14-27!

ARP Example!
Routers have multiple network !
Interface cards/devices. Each interface!
has a different MAC/IP address.!

Lecture 14-28!

ARP!

Suppose host 1’s IP layer (192.31.65.7) gets a packet from its transport layer destined for !
! !192.31.65.5 (host 2)?!

•  Host 1’s IP layer broadcasts an ARP packet onto the Ethernet asking: !
!``Who owns IP address 192.31.65.5?''!

•  Host 2 responds with its Ethernet address (E2).!
•  The IP layer on host 1 builds an Ethernet frame addressed to E2, puts the IP packet !
 in the payload field, and transmits it on the Ethernet.!
•  The Ethernet board of host 2 detects this frame and causes an interrupt, to deliver the packet to!
 the IP layer on host 2.!
Thus, the packet is transmitted from host 1’s IP layer to host 2’s IP layer!
!

Lecture 14-29!

ARP!

•  The performance of ARP can be improved by
caching the broadcast results.

•  Host 1 can include its own IP to Ethernet mapping
in the ARP packet.

Lecture 14-30!

ARP!

Suppose host 1’s IP layer (192.31.65.7) gets a packet from its transport layer with !
!destination address set to 192.31.63.8 (host 4)? !

•  Host 1’s IP layer broadcasts an ARP packet onto the Ethernet asking: !
!``Who owns IP address 192.31.63.8?''!

•  Router E3/F1 responds with its Ethernet address (E3).!
•  The IP layer on host 1 transmits an Ethernet frame addressed to E3!
•  The E3 Ethernet board of router F1 receives the frame and delivers it to the IP layer on F1!
•  F1’s IP layer knows from the destination address of 192.31.63.8 in the packet that it has to !
 be next sent to 192.31.60.7. !
•  F1’s IP layer sends an ARP on the FDDI ring for IP address 192.31.60.7. !
•  Router E4/F3 replies.!
•  F1’s IP layer transmits an FDDI frame (containing the packet) addressed to F3!
•  The FDDI board of F3 receives the frame, and delivers it to the IP layer.!
•  F3 knows from the destination address of 192.31.63.8 in the packet that it has to !
 be next sent out to 192.31.63.8 through the interface E4!
•  F3 does an ARP on the EE Ethernet for IP address 192.31.63.8 !
•  Host 4 responds with E6!
•  F3 transmits the packet inside an Ethernet frame addressed to E6, and it reaches host 4’s IP layer!
!

