
Lecture 9-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

September 24, 2013

Lecture 9

Leader Election
Reading: Sections 15.3

 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 9-2

Why Election?

Example 1: Your Bank maintains multiple
servers in their cloud, but for each
customer, one of the servers is
responsible, i.e., is the leader
What if there are two leaders per customer?

Inconsistency

What if servers disagree about who the leader is?

Inconsistency

What if the leader crashes?

Unavailability

Lecture 9-3

Why Election?

Example 2: (last week) In the sequencer-
based algorithm for total ordering of
multicasts, the "sequencer” = leader

Example 3: Group of cloud servers
replicating a file need to elect one among
them as the primary replica that will
communicate with the client machines

Example 4: Group of NTP servers: who is
the root server?

Lecture 9-4

What is Election?

In a group of processes, elect a Leader to
undertake special tasks.

What happens when a leader fails
(crashes)
Some (at least one) process detects this (how?)

Then what?

Focus of this lecture: Election algorithm
1. Elect one leader only among the non-faulty

processes

2. All non-faulty processes agree on who is the
leader

Lecture 9-5

 Any process can call for an election.

 A process can call for at most one election
at a time.

 Multiple processes can call an election
simultaneously.
All of them together must yield a single leader only

The result of an election should not depend
on which process calls for it.

Messages are eventually delivered.

System Model/Assumptions

Lecture 9-6

At the end of the election protocol, the non-
faulty process with the best (highest) election

attribute value is elected.
Attribute examples: leader has highest id or address.

Fastest cpu. Most disk space. Most number of files, etc.

Protocol may be initiated anytime or after
leader failure

 A run (execution) of the election algorithm
must always guarantee at the end:
 Safety:  non-faulty p: (p’s elected = (q: a particular non-

faulty process with the best attribute value) or )

 Liveness:  election: (election terminates)

 &  p: non-faulty process, p’s elected is not 

Problem Specification

Lecture 9-7

N Processes are organized in a logical ring

 pi has a communication channel to p(i+1) mod N

 All messages are sent clockwise around the ring.

Any process pi that discovers the old coordinator has failed
initiates an “election” message that contains pi ’s own id:attr.
This is the initiator of the election.

When a process pi receives an election message, it compares
the attr in the message with its own attr.

 If the arrived attr is greater, pi forwards the message.

 If the arrived attr is smaller and pi has not yet forwarded an election
message, it overwrites the message with its own id:attr, and forwards it.

 If the arrived id:attr matches that of pi, then pi’s attr must be the greatest
(why?), and it becomes the new coordinator. This process then sends an
“elected” message to its neighbor with its id, announcing the election
result.

When a process pi receives an elected message, it

 sets its variable electedi  id of the message.

 forwards the message, unless it is the new coordinator.

Algorithm 1: Ring Election

Lecture 9-8

Ring-Based Election: Example

24

15

9

4

33

28

17

24

1

(In this example, attr:=id)

• In the example: The election was

started by process 17.

The highest process identifier

encountered so far is 24.

 (final leader will be 33)

• The worst-case scenario occurs

when the counter-clockwise

neighbor (@ the initiator) has the

highest attr.

Initiator

Lecture 9-9

Ring-Based Election: Analysis

24

15

9

4

33

28

17

24

1

The worst-case scenario occurs
when the counter-clockwise neighbor
has the highest attr.

In a ring of N processes, in the worst

case:

 A total of N-1 messages are
required to reach the new
coordinator-to-be (election
messages).

 Another N messages are required
until the new coordinator-to-be
ensures it is the new coordinator
(election messages – no changes).

Another N messages are required
to circulate the elected messages.

Total Message Complexity = 3N-1

Turnaround time = 3N-1

Lecture 9-10

Correctness?

Assume – no failures happen during the run of the
election algorithm

• Safety and Liveness are satisfied.

What happens if there are failures during the
election run?

Lecture 9-11

Example: Ring Election

Election: 2

Election: 4

Election: 3

Election: 4

P1

P2

P3

P4

P0

P5

1. P2 initiates
election after old
leader P5 failed

P1

P2

P3
P4

P0

P5

2. P2 receives “election”,
 P4 dies

P1

P2

P3
P4

P0

P5

3. Election: 4 is
forwarded for ever?

May not terminate when process failure occurs during the election!
Consider above example where attr == id

Does not satisfy liveness

Lecture 9-12

Processes are organized in a logical ring.

Any process that discovers the coordinator (leader) has failed
initiates an “election” message.

 The message is circulated around the ring, bypassing failed
processes.

 Each process appends (adds) its id:attr to the message as it
passes it to the next process (without overwriting what is
already in the message)

 Once the message gets back to the initiator, it elects the
process with the best election attribute value.

It then sends a “coordinator” message with the id of the newly-
elected coordinator. Again, each process adds its id to the end
of the message, and records the coordinator id locally.

 Once “coordinator” message gets back to initiator,

 election is over if would-be-coordinator’s id is in id-list.

 else the algorithm is repeated (handles election failure).

Algorithm 2: Modified Ring Election

Lecture 9-13

Example: Ring Election

Election: 2

Election:
2, 3,4,0,1

Election: 2,3

Coord(4): 2

Coord(4): 2,3

Coord(4)
2, 3,0,1

Election: 2

Election: 2,3

Election:
2,3,0

Election:
2, 3,0,1

Coord(3): 2

Coord(3): 2,3

Coord(3):
2,3,0

Coord(3):
2, 3,0,1

P1

P2

P3

P4

P0

P5

1. P2 initiates election

P1

P2

P3
P4

P0

P5

2. P2 receives “election”,
 P4 dies

P1

P2

P3
P4

P0

P5

3. P2 selects 4 and
announces the result

P1

P2

P3
P4

P0

P5

4. P2 receives “Coord”,
but P4 is not included

P1

P2

P3
P4

P0

P5

5. P2 re-initiates election

P1

P2

P3
P4

P0

P5

6. P3 is finally elected

Lecture 9-14

Modified Ring Election

• Supports concurrent elections – an initiator with a
lower id blocks other initiators’ election messages

• Reconfiguration of ring upon failures
– Can be done if all processes “know” about all other processes

in the system (Membership list! – MP2)

• If initiator non-faulty …
– How many messages? 2N

– What is the turnaround time? 2N

– Size of messages? O(N)

• How would you redesign the algorithm to be fault-
tolerant to an initiator’s failure?
– One idea: Have the initiator’s successor wait a while, timeout,

then re-initiate a new election. Do the same for this
successor’s successor, and so on…

– What if timeouts are too short… starts to get messy

Lecture 9-15

Leader Election Is Hard

• The Election problem is related to the consensus
problem

• Consensus is impossible to solve with 100%
guarantee in an asynchronous system with no
bounds on message delays and arbitrarily slow
processes

• So is leader election in fully asynchronous
system model

• Where does the modified Ring election start to
give problems with the above asynchronous
system assumptions?
– pi may just be very slow, but not faulty (yet it is not elected as

leader!)

– Also slow initiator, ring reorganization

Lecture 9-16

 Assumptions:

 Synchronous system

 All messages arrive within Ttrans units of time.

 A reply is dispatched within Tprocess units of time after
the receipt of a message.

 if no response is received in 2Ttrans + Tprocess, the
process is assumed to be faulty (crashed).

 attr==id

Each process knows all the other
processes in the system (and thus their
id’s)

Algorithm 3: Bully Algorithm

Lecture 9-17

When a process finds the coordinator has
failed, if it knows its id is the highest, it
elects itself as coordinator, then sends a
coordinator message to all processes with
lower identifiers than itself

A process initiates election by sending an
election message to only processes that
have a higher id than itself.
 If no answer within timeout, send coordinator message to

lower id processes  Done.

 if any answer received, then there is some non-faulty
higher process  so, wait for coordinator message. If
none received after another timeout, start a new election.

A process that receives an “election”
message replies with answer message, &
starts its own election protocol (unless it
has already done so)

Algorithm 3: Bully Algorithm

Lecture 9-18

Example: Bully Election

answer
answer

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives answers

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

answer

Election Election

Election

Election

Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

answer=OK

Lecture 9-19

The Bully Algorithm with Failures

The coordinator p4 fails and p1 detects this

p3 fails

p 1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

coordinator

Stage 4

C

election

election

Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

election

timeout

Lecture 9-20

Analysis of The Bully Algorithm

• Best case scenario: The process with the second
highest id notices the failure of the coordinator
and elects itself.
– N-2 coordinator messages are sent.

– Turnaround time is one message transmission time.

Lecture 9-21

Analysis of The Bully Algorithm

• Worst case scenario: When the process with the
lowest id in the system detects the failure.
– N-1 processes altogether begin elections, each sending

messages to processes with higher ids.

» i-th highest id process sends i-1 election messages

– The message overhead is O(N2).

– Turnaround time is approximately 5 message transmission
times if there are no failures during the run:

1. Election message from lowest id process

2. Answer to lowest id process from 2nd highest id process

3. Election from 2nd highest id process

4. Timeout for answers @ 2nd highest id process

5. Coordinator message from 2nd highest id process

Lecture 9-22

Summary

• Coordination in distributed systems requires a
leader process

• Leader process might fail

• Need to (re-) elect leader process

• Three Algorithms
– Ring algorithm

– Modified Ring algorithm

– Bully Algorithm

Lecture 9-23

Readings and Announcements

• For Thursday: Peer to peer systems
– See readings on course schedule

• MP2
– By now, you should have an initial design for MP2.

