
Lecture 7-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

September 17, 2013

Lecture 7

Multicast

Reading: Sections 15.4

 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 7-2

Communication Modes in Distributed System

 Unicast (best effort or reliable)

 Messages are sent from exactly one process to one process.

 Best effort: if a message is delivered it would be intact; no

reliability guarantees.

 Reliable: guarantees delivery of messages.

 Broadcast

 Messages are sent from exactly one process to all processes

on the network.

 Broadcast protocols are not practical.

 Multicast

 Messages broadcast within a group of processes.

 A multicast message is sent from any one process to the group

of processes on the network.

 Reliable multicast can be implemented “above” (i.e., “using”) a

reliable unicast.

This lecture!

Lecture 7-3

Lecture 7-4

Other Examples of Multicast Use

• Akamai’s Configuration Management System
(called ACMS) uses a core group of 3-5 servers.
These servers continuously multicast to each
other the latest updates. They use reliable
multicast. After an update is reliably multicast
within this group, it is then sent out to all the
(1000s of) servers Akamai has all over the world.

• Air Traffic Control System: orders by one ATC
need to be ordered (and reliable) multicast out to
other ATC’s.

• Newsgroup servers multicast to each other in a
reliable and ordered manner.

• Facebook servers multicast your updates to each
other

Lecture 7-5

What’re we designing in this class

Application

(at process p)

MULTICAST PROTOCOL

send
multicast

Incoming

messages

deliver
multicast
(upcall)

One process p

Lecture 7-6

Basic Multicast (B-multicast)

• Let’s assume the all processes know the group
membership

• A straightforward way to implement B-multicast is
to use a reliable one-to-one send (unicast)
operation:
– B-multicast(group g, message m):

 for each process p in g, send (p,m).

– receive(m): B-deliver(m) at p.

• A “correct” process= a “non-faulty” process

• A basic multicast primitive guarantees a correct
process will eventually deliver the message, as
long as the sender (multicasting process) does
not crash.
– Can we provide reliability even when the sender crashes (after

it has sent the multicast)?

Lecture 7-7

Reliable Multicast

• Integrity: A correct (i.e., non-faulty) process p
delivers a message m at most once.

• Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m itself.
– Guarantees liveness to the sender.

• Agreement: If some one correct process delivers
message m, then all other correct processes in
group(m) will eventually deliver m.
– Property of “all or nothing.”

– Validity and agreement together ensure overall liveness: if
some correct process multicasts a message m, then, all correct
processes deliver m too.

Lecture 7-8

Reliable R-Multicast Algorithm
R-multicast

B-multicast

reliable unicast

“USES”

“USES”

Lecture 7-9

Reliable Multicast Algorithm (R-multicast)

Integrity

Agreement

if some correct process B-multicasts a message m, then,

all correct processes R-deliver m too. If no correct process

B-multicasts m, then no correct processes R-deliver m.

Integrity, Validity

Lecture 7-10

What about Multicast Ordering?

• FIFO ordering: If a correct process issues
multicast(g,m) and then multicast(g,m’), then every
correct process that delivers m’ will have already
delivered m.

• Causal ordering: If multicast(g,m)  multicast(g,m’)
then any correct process that delivers m’ will have
already delivered m.

• Total ordering: If a correct process delivers
message m before m’ (independent of the senders),
then any other correct process that delivers m’ will
have already delivered m.

Lecture 7-11

Total, FIFO and Causal Ordering

F3

F1

F2

T2

T1

P1 P2 P3

Tim e

C3

C1

C2

•Totally ordered messages

T1 and T2.

•FIFO-related messages F1

and F2.

•Causally related messages

C1 and C3

• Causal ordering implies

FIFO ordering (why?)

• Total ordering does not

imply causal ordering.

• Causal ordering does not

imply total ordering.

• Hybrid mode: causal-total

ordering, FIFO-total

ordering.

Lecture 7-12

Display From Newsgroup

Newsgroup: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?
 (a) FIFO (b) causal (c) total

What is the most appropriate ordering for Facebook posts?

Lecture 7-13

 Look at messages from each

process in the order they were sent:

 Each process keeps a sequence

 number for each other process (vector)

 When a message is received,

 as expected (next sequence), accept

 higher than expected, buffer in a queue

 lower than expected, reject

Providing Ordering Guarantees (FIFO)

If
Message#
is

Lecture 7-14

Implementing FIFO Ordering

• Sp
g: the number of messages p has sent to g.

• Rq
g: the sequence number of the latest group-g message

that p has delivered from q (maintained for all q at p)

• For p to FO-multicast m to g

– p increments Sp
g by 1.

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.

• At process p, Upon receipt of m from q with sequence
number S:

– p checks whether S= Rq
g+1. If so, p FO-delivers m and increments Rq

g

– If S > Rq
g+1, p places the message in the hold-back queue until the

intervening messages have been delivered and S= Rq
g+1.

– If S < Rq
g+1, reject m

Lecture 7-15

Hold-back Queue for Arrived Multicast

Messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming

messages

When delivery
guarantees are
met

Lecture 7-16

Example: FIFO Multicast

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0
2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 1
2 2 1

1

Reject:
1 < 1 + 1

Accept
1 = 0 + 1

Accept:
2 = 1 + 1

2 0 0

Buffer 2
> 0 + 1

Accept:
1 = 0 + 1

2 0 0

Accept
Buffer 2
= 1 + 1

Reject: 1
< 1 + 1

Accept 1
= 0 + 1

Sequence Vector 0 0 0

(do NOT confuse with vector timestamps)
“Accept” = Deliver

Lecture 7-17

Total Ordering Using a Sequencer

Sequencer = Leader process

Lecture 7-18

ISIS: Total ordering without sequencer

2

1

1

2

2

1 Message

P 2

P 3

P 1

P 4

3 Agreed Seq

3

3

Lecture 7-19

ISIS algorithm for total ordering

1. The multicast sender multicasts the message to everyone.

2. Recipients add the received message to a special queue
called the priority queue, tag the message undeliverable,
and reply to the sender with a proposed priority (i.e.,
proposed sequence number). Further, this proposed priority
is 1 more than the latest sequence number heard so far at
the recipient, suffixed with the recipient's process ID. The
priority queue is always sorted by priority.

3. The sender collects all responses from the recipients,
calculates their maximum, and re-multicasts original
message with this as the final priority for the message.

4. On receipt of this information, recipients mark the message
as deliverable, reorder the priority queue, and deliver the set
of lowest priority messages that are marked as deliverable.

Lecture 7-20

Proof of Total Order

• For a message m1, consider the first process p that delivers m1

• At p, when message m1 is at head of priority queue

• Suppose m2 is another message that has not yet been delivered
(i.e., is on the same queue or has not been seen yet by p)

 finalpriority(m2) >=

 proposedpriority(m2) >

 finalpriority(m1)

• Suppose there is some other process p’ that delivers m2 before it
delivers m1. Then at p’,

 finalpriority(m1) >=

 proposedpriority(m1) >

 finalpriority(m2)

 a contradiction!

Due to “max” operation at sender
and since proposed priorities by process p only increase

Since queue ordered by increasing priority

Due to “max” operation at sender

Since queue ordered by increasing priority

Lecture 7-21

Causal Ordering using vector timestamps

The number of group-g messages
from process j that have been seen at
process i so far

Lecture 7-22

Example: Causal Ordering Multicast

P1

P2

P3

Physical Time

(1,1,0)

Reject:

Accept

0,0,0

0,0,0

0,0,0

1,0,0 1,1,0

1,0,0

Buffer,
missing

P1(1)

1,1,0

1,1,0

1,1,0

Accept:

1,0,0

Accept
Buffered
message

1,1,0

(1,0,0)

(1,0,0)

(1,1,0) (1,1,0)

Accept

Lecture 7-23

Summary

Multicast is operation of sending one message to
multiple processes in a given group

• Reliable multicast algorithm built using unicast

• Ordering – FIFO, total, causal

Thursday

• RPCs: Section 4.3, parts of Chapter 5
– Important for MP2

• Homework 1 due this Thursday
– Hand in to me at start of lecture (not during or after lecture)

