
Lecture 6-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

September 12, 2013

Lecture 6

Global Snapshots

Reading: Sections 14.5

 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 6-2

[United Nations photo by Paul Skipworth for Eastman Kodak Company ©1995]

Example of a Global Snapshot

Lecture 6-3

The distributed version is challenging

and important

• More often each country’s premier were sitting in
their respective capital, and sending messages to
each other.

• That’s the challenge of distributed global
snapshots!

• In a cloud: multiple servers (for a
service/application) handling multiple concurrent
events and interacting with each other

• The ability to obtain a “global photograph” of the
system is important

Lecture 6-4

Detecting Global Properties
p2p1

message

garbage obj ect

objec t

reference

a. Garbage col lec tion

p2p1 wait-for

wait-forb. Deadl ock

p2p1

activate

pass ive pass ivec. Termi nation

Lecture 6-5

Algorithms to Find Global States

• Why?
– (Distributed) garbage collection [think multiple processes sharing and

referencing objects]

– (Distributed) deadlock detection, termination [think database
transactions]

– Global states most useful for detecting stable predicates : once true
always stays true (unless you do something about it)

» e.g., once a deadlock, always stays a deadlock

• What?
– Global state=states of all processes + states of all communication

channels

– Capture the instantaneous state of each process

– And the instantaneous state of each communication channel, i.e.,
messages in transit on the channels

• How?
– We’ll see this lecture!

Lecture 6-6

Obvious First Solution…

• Synchronize clocks of all processes

• Ask all processes to record their states at known
time t

• Problems?
– Time synchronization possible only approximately (but

distributed banking applications cannot take approximations)

– Does not record the state of messages in the channels

• Again: synchronization not required – causality is
enough!

Lecture 6-7

Two Processes and Their Initial States

p1 p2
c2

c1

account widgets

$1000 (none)

account widgets

$50 2000

Lecture 6-8

Execution of the Processes

p
1

p
2

(empty) <$1000, 0> <$50, 2000>

(empty)

c
2

c
1

1. Global state S
0

2. Global state S
1

3. Global state S
2

4. Global state S
3

p
1

p
2

(Order 10, $100) <$900, 0> <$50, 2000>

(empty)

c
2

c
1

p
1

p
2

(Order 10, $100) <$900, 0> <$50, 1995>

(five widgets)

c
2

c
1

p
1

p
2

(Order 10, $100) <$900, 5> <$50, 1995>

(empty)

c
2

c
1

Send 5 freebie widgets!

Lecture 6-9

Cuts

Cut = time frontier, one at each process

f  cut C iff f is to the left of the frontier C

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1
e3

2

Inconsistent cut

Consistent
cut

Lecture 6-10

Consistent Cuts

f  cut C iff f is to the left of the frontier C

A cut C is consistent if and only if

 e  C (if f  e then f  C)

 A global state S is consistent if and only if it

corresponds to a consistent cut

A consistent cut == a global snapshot

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1
e3

2

Inconsistent cut

Consistent
cut Lamport’s “happens-before”

Lecture 6-11

The “Snapshot” Algorithm

 Problem: Record a set of process and

channel states such that the combination is

a global snapshot/consistent cut.

System Model:

There is a uni-directional communication channel

between each ordered process pair (Pj  Pi and Pi  Pj)

Communication channels are FIFO-ordered

No failure, all messages arrive intact, exactly once

Any process may initiate the snapshot (by sending a
special message called “Marker”)

Snapshot does not require application to stop sending

messages, does not interfere with normal execution

Each process is able to record its state and the state of its

incoming channels (no central collection)

Lecture 6-12

The “Snapshot” Algorithm (2)

1. Marker sending rule for initiator process P0

 After P0 has recorded its own state

• for each outgoing channel C, send a marker message

on C

2. Marker receiving rule for a process Pk

 on receipt of a marker over channel C

 if Pk has not yet received a marker

- record Pk’s own state

- record the state of C as “empty”

- for each outgoing channel C, send a marker on C

- turn on recording of messages over other incoming

channels

- else

- record the state of C as all the messages received over C

since Pk saved its own state; stop recording state of C

Lecture 6-13

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:

 if (pi has not yet recorded its state) it

 records its process state now;

 records the state of c as the empty set;

 turns on recording of messages arriving over other incoming channels;

 else

 pi records the state of c as the set of messages it has received over c

 since it saved its state.

 end if

Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:

 pi sends one marker message over c

 (before it sends any other message over c).

Lecture 6-14

Snapshot Example

P1

P2

P3

e1
0

e2
0

e2
3

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
2,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
4

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
1

6- P3 receives Marker over C23, sets state(C23) = {}

e1
3

7- P1 receives Marker over C31, sets state(C31) = {}

Lecture 6-15

Provable Assertion: Chandy-Lamport algo.

 determines a consistent cut

• Let ei and ej be events occurring at pi and pj, respectively
such that ei  ej

• The snapshot algorithm ensures that

 if ej is in the cut then ei is also in the cut.

• if ej  <pj records its state>, then it must be true that ei  <pi
records its state>.

• By contradiction, suppose <pi records its state>  ei

• Consider the path of app messages (through other
processes) that go from ei  ej

• Due to FIFO ordering, markers on each link in above path
precede regular app messages

• Thus, since <pi records its state>  ei , it must be true
that pj received a marker before ej

• Thus ej is not in the cut => contradiction

Lecture 6-16

Formally Speaking…. Process Histories

 For a process Pi , where events ei
0, ei

1, …

occur:

 history(Pi) = hi = <ei
0, ei

1, … >

 prefix history(Pi
k) = hi

k = <ei
0, ei

1, …,ei
k >

 Si
k : Pi ’s state immediately after kth event

 For a set of processes P1 , …,Pi , …. :

 global history: H = i (hi)

 global state: S = i (Si
k

i) channels

 a cut C  H = h1
c1  h2

c2  …  hn
cn

 the frontier of C = {ei
ci, i = 1,2, … n}

Lecture 6-17

Global States useful for detecting Global

Predicates

 A cut is consistent if and only if it does not violate causality

A Run is a total ordering of events in H that is
consistent with each hi’s ordering

 A Linearization is a run consistent with happens-

before () relation in H (history of all events).

 Linearizations pass through consistent global

states.

 A global state Sk is reachable from global state Si,

if there is a linearization, L, that passes through Si

and then through Sk.

 The distributed system evolves as a series of

transitions between global states S0 , S1 , ….

Lecture 6-18

Global State Predicates
 A global-state-predicate is a function from the set of

global states to {true, false} , e.g., deadlock,

termination

 A global state S0 satisfies liveness property P iff:

liveness(P(S0))   L linearizations from S0 L passes through an SL & P(SL)

 = true

Ex: P(S) = the computation will terminate

A global state S0 satisfies this safety property P if:

safety(P(S0))  S reachable from S0, P(S) = false

Ex: P(S) = S has a deadlock

Global states often useful for detecting stable global-

state-predicate: it is one that once it becomes true, it

remains true in subsequent global states, e.g., an

object O is orphaned, or deadlock

A stable predicate may be a safety or liveness predicate

Lecture 6-19

Quick Note – Liveness versus Safety

Can be confusing, but terms are very important:

• Liveness=guarantee that something good will happen,
eventually
– “Guarantee of termination” is a liveness property

– Guarantee that “at least one of the atheletes in the 100m final will win
gold” is liveness

– A criminal will eventually be jailed

– Completeness in failure detectors

• Safety=guarantee that something bad will never happen

– Deadlock avoidance algorithms provide safety

– A peace treaty between two nations provides safety

– An innocent person will never be jailed

– Accuracy in failure detectors

• Can be difficult to satisfy both liveness and safety!

Lecture 6-20

Summary, Announcements

• This class: importance of global snapshots,
Chandy and Lamport algorithm, violation of
causality

• Reading for next week: Sections 15.4, 4.3 (and
parts of Chapter 5)

• MP1 due this Sunday at midnight
– Demos next Monday

– Watch Piazza for signup sheets for demos

• By now you should have a working system, and
should have written most tests for it

