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Why synchronization? 

• You want to catch the 13N Silver bus at the Illini 
Union stop at 6.05 pm, but your watch is off by 15 
minutes 
– What if your watch is Late by 15 minutes?  

– What if your watch is Fast by 15 minutes? 

 

 

• Synchronization is required for  

– Correctness  

– Fairness 
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Why synchronization? 

• Cloud airline reservation system 

• Server A receives a client request to purchase last 
ticket on flight ABC 123. 

• Server A timestamps purchase using local clock 
9h:15m:32.45s, and logs it. Replies ok to client.  

• That was the last seat. Server A sends message to 
Server B saying “flight full.” 

• B enters “Flight ABC 123 full” + local clock value 
(which reads 9h:10m:10.11s) into its log. 

• Server C queries A’s and B’s logs. Is confused 
that a client purchased a ticket after the flight 
became full. 

– May execute incorrect or unfair actions.  
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• An Asynchronous Distributed System (DS) consists of a number of 

processes. 

• Each process has a state (values of variables). 

• Each process takes actions to change its state, which may be an 

instruction or a communication action (send, receive). 

• An event is the occurrence of an action. 

• Each process has a local clock – events within a process can be 

assigned timestamps, and thus ordered linearly. 

• But – in a DS, we also need to know the time order of events across 

different processes. 

 Clocks across processes are not synchronized in an asynchronous 

DS 

(unlike in a multiprocessor/parallel system, where they are). So… 

1. Process clocks can be different 

2. Need algorithms for either (a) time synchronization, or (b) for telling which event 

happened before which 

 

Basics – Processes and Events  
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• In a DS, each process has its own clock. 

• Clock Skew versus Drift 

• Clock Skew = Relative Difference in clock values of two processes 

• Clock Drift = Relative Difference in clock frequencies (rates) of two processes 

• A non-zero clock drift causes skew to increase (eventually).  

• Maximum Drift Rate (MDR) of a clock  

• Absolute MDR is defined relative to Coordinated Universal Time 

(UTC). UTC is the “correct” time at any point of time. 

• MDR of a process depends on the  environment. 

• Max drift rate between two clocks with similar MDR is 2 * MDR 

    

 

Physical Clocks & Synchronization  

Max-Synch-Interval =  

 (MaxAcceptableSkew—CurrentSkew) / (MDR * 2) 

(i.e., time = distance/speed) 
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Synchronizing Physical Clocks 

• Ci(t): the reading of the software clock at process i when the 
real time is t. 

• External synchronization: For a synchronization bound D>0, 
and for source S of UTC time, 

     

    for i=1,2,...,N and for all real times t. 

    Clocks Ci are externally accurate to within the bound D. 

• Internal synchronization: For a synchronization bound D>0, 

  

    for i, j=1,2,...,N and for all real times t. 

    Clocks Ci are internally accurate within the bound D. 

• External synchronization with D  Internal synchronization 
with 2D 

• Internal synchronization with D  External synchronization 
with ?? 

,)()( DtCtS i 

DtCtC ji  )()(
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Clock Synchronization Using a Time Server 

m r 

m t 
p Time server,S 
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•  Uses a time server to synchronize clocks 

•  Time server keeps the reference time (say UTC) 

•  A client asks the time server for time, the server 

responds with its current time T, and the client 

uses this received value to set its clock 

• But network round-trip time introduces an error… 

   

 

Cristian’s Algorithm  

Let RTT = response-received-time – request-sent-time 
(measurable at client) 

Also, suppose we know: (1) the minimum value min of the 
client-server one-way transmission time [Depends on what?] 

(2) and that the server timestamped the message at the last 
possible instant before sending it back 

Then, the actual time could be between [T+min,T+RTT— min] 

 What are the two extremes? 
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Client sets its clock to halfway between  T+min and 

T+RTT— min  i.e.,  at T+RTT/2 

– Expected (i.e., average) skew in client clock time will be = half of 

this interval = (RTT/2 – min) 

Can increase clock value, but should never 

decrease it – Why? 

Can adjust speed of clock too (take multiple 

readings) – either up or down is ok.  

 For unusually long RTTs, repeat the time request 

  For non-uniform RTTs, use weighted  average 

  

 

Cristian’s Algorithm (2)  

avg-clock-errorn = (w * latest-clock-error) +   

         (1 – w) * avg-clock-errorn-1 

Typically w=0.5 
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•  Uses an elected master process to synchronize among clients, 

without the presence of a time server  

• The elected master broadcasts to all machines requesting for 

their time, adjusts times received for RTT & latency, averages 

times, and tells each machine how to adjust. 

• Multiple leaders may also be used.  

 Averaging client’s clocks may cause the entire system to drift 

away from UTC over time (Internal Synchronization) 

 Failure of the master requires some time for re-election, so 

drift/skew bounds cannot be guaranteed 

 

Berkeley Algorithm  
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• Uses a network of time servers to synchronize 

all processes on a network.  

• Time servers are connected by a 

synchronization subnet tree.  The root is in 

touch with UTC.  Each node synchronizes its  

   children nodes. 

  

  

 

Secondary servers, 
synched by the 
primary server 

The Network Time Protocol (NTP)  

Primary server, direct synch. 

Strata 3, 
synched by the 
secondary 
servers 

1 

2 2 2 

3 3 3 3 3 3 
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Messages Exchanged Between a Pair of NTP  

Peers (“Connected Servers”) 

T i 

T i-1 T i -2 

T i - 3 

Server B 

Server A 

Time 

m m' 

Time 

Each message bears timestamps of recent message events: the local time 
when the previous NTP message was sent and received, and the local time 
when the current message was transmitted. 
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Theoretical Base for NTP 

T i 

T i-1 T i -2 

T i - 3 

Server B 

Server A 

Time 

m m' 

Time 

 
• t and t’: actual transmission times  
       for m and m’(unknown) 
• o:  true offset of clock at B  
       relative to clock at A 
• oi: estimate of actual offset    
       between the two clocks 
• di: estimate of accuracy of oi ; 
       total transmission times for m  
       and m’; di=t+t’ 

i-2T = i-3T + t + o

iT = i-1T + t '-o

This leads to

id = t + t ' = i-2T - i-3T + iT - i-1T

o = io + (t '- t) / 2,   where 

io = ( i-2T - i-3T + i-1T - iT ) / 2.

It can then be shown that

io - id / 2 £ o £ io + id / 2.
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Logical Clocks  

 Is it always necessary to give absolute time to events? 

 Suppose we can assign relative time to events, in a way that does 

not violate their causality 

 Well, that would work – we humans run our lives without looking at our watches for 

everything we do 

 First proposed by Leslie Lamport in the 70’s  

 Define a logical relation Happens-Before () among events: 

1.  On the same process: a  b, if time(a) < time(b)  

2.  If p1 sends m to p2: send(m)  receive(m) 

3.  (Transitivity) If a  b and  b  c then  a  c 

 Lamport Algorithm assigns logical timestamps to events: 

  All processes use a counter (clock) with initial value of zero 

  A process increments its counter when a send or an instruction 

happens at it. The counter is assigned to the event as its timestamp. 

  A send (message) event carries its timestamp   

  For a receive (message) event the counter is updated by    

  max(local clock, message timestamp) + 1 
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Events Occurring at Three Processes 

p1

p2

p3

a b

c d

e f

m1

m2

Physical

t ime
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Lamport Timestamps 

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical 
t ime
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Find the Mistake: Lamport Logical Time  

   

p  1 

p  2 

p  3 

p  4 

1 

2 

2 

3 

3 

5 
4 

5 

3 

6 

4 

6 8 

7 

0 

0 

0 

0 

1 

2 

4 

3 6 

7 

n Clock Value 

Message 
timestamp 

Physical Time 

4 



Lecture 5-18 

Corrected Example: Lamport Logical Time  

   

p  1 

p  2 

p  3 

p  4 

1 

2 

2 

3 

3 

5 
4 

5 

7 

6 

8 

9 10 

7 

0 

0 

0 

0 

1 

2 

4 

3 6 

7 

n Clock Value 

Message 
timestamp 

Physical Time 

8 

3 and 7 are 
logically concurrent 
events 
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Vector Logical Clocks  

  With Lamport Logical Timestamp 

e  f   timestamp(e) < timestamp (f),  but 

timestamp(e) < timestamp (f)   {e  f} OR {e and f concurrent} 

  Vector Logical time addresses this issue: 

 N processes. Each uses a vector of counters (logical clocks), 

initially all zero. ith element is the clock value for process i. 

 Each process i increments the ith element of its vector  

     upon an instruction or send event. Vector value is timestamp 

  of the event. 

 A send(message) event carries its vector timestamp (counter 

vector) 

 For a receive(message) event,  

         Max(Vreceiver[j] , Vmessage[j]),   if j is not self 

          Vreceiver[j] + 1  otherwise 

 

Vreceiver[j] = 
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Vector Timestamps 

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical 
t ime
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Example: Vector Timestamps 

   

p  1 

p  2 

p  3 

p  4 

0,0,0,0 

Vector logical clock 

Message 
(vector timestamp) 

Physical Time 

0,0,0,0 

0,0,0,0 

0,0,0,0 

(1,0,0,0) 

1,0,0,0 

1,1,0,0 

2,0,0,0 

2,0,1,0 

(2,0,0,0) 

2,0,2,0 

2,0,2,1 

(2,0,2,0) 

1,2,0,0 

2,2,3,0 

(1,2,0,0) 

4,0,2,2 

4,2,4,2 

(4,0,2,2) 

2,0,2,2 

3,0,2,2 

(2,0,2,2) 

2,0,2,3 

4,2,5,3 

(2,0,2,3) 

n,m,p,q 
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Comparing Vector Timestamps  

 VT1 = VT2,   

  iff   VT1[i] = VT2[i], for all i = 1, … , n 

 VT1 < VT2,   

  iff   VT1[i] < VT2[i], for all i = 1, … , n 

 VT1 < VT2,   

  iff   VT1 < VT2 &  

         j (1 < j < n & VT1[j] < VT2 [j]) 

 Then: VT1 is concurrent with VT2 

  iff  (not VT1 < VT2  AND not  VT2 < VT1) 
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Side Issue: Causality Violation  

   

P1 

P2 

P3 

1 2 

3 4 

5 

0 

0 

0 

1 

2 

Physical Time 

4 
6 

Include(obj1) 

obj1.method() 

P2 has obj1 

• Causality violation occurs when order of messages causes an 
action based on information that another host has not yet 
received. 

• In designing a distributed system, potential for causality 
violation is important to notice 
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Detecting Causality Violation  

   

P1 

P2 

P3 

(1,0,0) 

(2,0,0) 

Physical Time 

(2,0,2) 

• Potential causality violation can be detected by vector 
timestamps. 

• If the vector timestamp of a message is less than the local 
vector timestamp, on arrival, there is a potential causality 
violation. 

0,0,0 

0,0,0 

0,0,0 

1,0,0 

2,0,1 

2,2,2 
2,1,2 

2,0,2 

2,0,0 
Violation:  

(1,0,0) < (2,1,2) 
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Summary, Announcements  

• Time synchronization important for distributed systems 
– Cristian’s algorithm 

– Berkeley algorithm 

– NTP 

• Relative order of events enough for practical purposes 
– Lamport’s logical clocks 

– Vector clocks 

 

• Next class: Global Snapshots. Reading: 14.5 

 

• HW1 due next Thursday 9/19 

• MP1: due this Sunday 
– By now, you should have written most of your code. 


