
Lecture 5-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

September 10, 2013

Lecture 5

Time and Synchronization

Reading: Sections 14.1-14.4

 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 5-2

Why synchronization?

• You want to catch the 13N Silver bus at the Illini
Union stop at 6.05 pm, but your watch is off by 15
minutes
– What if your watch is Late by 15 minutes?

– What if your watch is Fast by 15 minutes?

• Synchronization is required for

– Correctness

– Fairness

Lecture 5-3

Why synchronization?

• Cloud airline reservation system

• Server A receives a client request to purchase last
ticket on flight ABC 123.

• Server A timestamps purchase using local clock
9h:15m:32.45s, and logs it. Replies ok to client.

• That was the last seat. Server A sends message to
Server B saying “flight full.”

• B enters “Flight ABC 123 full” + local clock value
(which reads 9h:10m:10.11s) into its log.

• Server C queries A’s and B’s logs. Is confused
that a client purchased a ticket after the flight
became full.

– May execute incorrect or unfair actions.

Lecture 5-4

• An Asynchronous Distributed System (DS) consists of a number of

processes.

• Each process has a state (values of variables).

• Each process takes actions to change its state, which may be an

instruction or a communication action (send, receive).

• An event is the occurrence of an action.

• Each process has a local clock – events within a process can be

assigned timestamps, and thus ordered linearly.

• But – in a DS, we also need to know the time order of events across

different processes.

 Clocks across processes are not synchronized in an asynchronous

DS

(unlike in a multiprocessor/parallel system, where they are). So…

1. Process clocks can be different

2. Need algorithms for either (a) time synchronization, or (b) for telling which event

happened before which

Basics – Processes and Events

Lecture 5-5

• In a DS, each process has its own clock.

• Clock Skew versus Drift

• Clock Skew = Relative Difference in clock values of two processes

• Clock Drift = Relative Difference in clock frequencies (rates) of two processes

• A non-zero clock drift causes skew to increase (eventually).

• Maximum Drift Rate (MDR) of a clock

• Absolute MDR is defined relative to Coordinated Universal Time

(UTC). UTC is the “correct” time at any point of time.

• MDR of a process depends on the environment.

• Max drift rate between two clocks with similar MDR is 2 * MDR

Physical Clocks & Synchronization

Max-Synch-Interval =

 (MaxAcceptableSkew—CurrentSkew) / (MDR * 2)

(i.e., time = distance/speed)

Lecture 5-6

Synchronizing Physical Clocks

• Ci(t): the reading of the software clock at process i when the
real time is t.

• External synchronization: For a synchronization bound D>0,
and for source S of UTC time,

 for i=1,2,...,N and for all real times t.

 Clocks Ci are externally accurate to within the bound D.

• Internal synchronization: For a synchronization bound D>0,

 for i, j=1,2,...,N and for all real times t.

 Clocks Ci are internally accurate within the bound D.

• External synchronization with D Internal synchronization
with 2D

• Internal synchronization with D External synchronization
with ??

,)()(DtCtS i

DtCtC ji)()(

Lecture 5-7

Clock Synchronization Using a Time Server

m r

m t
p Time server,S

Lecture 5-8

• Uses a time server to synchronize clocks

• Time server keeps the reference time (say UTC)

• A client asks the time server for time, the server

responds with its current time T, and the client

uses this received value to set its clock

• But network round-trip time introduces an error…

Cristian’s Algorithm

Let RTT = response-received-time – request-sent-time
(measurable at client)

Also, suppose we know: (1) the minimum value min of the
client-server one-way transmission time [Depends on what?]

(2) and that the server timestamped the message at the last
possible instant before sending it back

Then, the actual time could be between [T+min,T+RTT— min]

 What are the two extremes?

Lecture 5-9

Client sets its clock to halfway between T+min and

T+RTT— min i.e., at T+RTT/2

– Expected (i.e., average) skew in client clock time will be = half of

this interval = (RTT/2 – min)

Can increase clock value, but should never

decrease it – Why?

Can adjust speed of clock too (take multiple

readings) – either up or down is ok.

 For unusually long RTTs, repeat the time request

 For non-uniform RTTs, use weighted average

Cristian’s Algorithm (2)

avg-clock-errorn = (w * latest-clock-error) +

 (1 – w) * avg-clock-errorn-1

Typically w=0.5

Lecture 5-10

• Uses an elected master process to synchronize among clients,

without the presence of a time server

• The elected master broadcasts to all machines requesting for

their time, adjusts times received for RTT & latency, averages

times, and tells each machine how to adjust.

• Multiple leaders may also be used.

 Averaging client’s clocks may cause the entire system to drift

away from UTC over time (Internal Synchronization)

 Failure of the master requires some time for re-election, so

drift/skew bounds cannot be guaranteed

Berkeley Algorithm

Lecture 5-11

• Uses a network of time servers to synchronize

all processes on a network.

• Time servers are connected by a

synchronization subnet tree. The root is in

touch with UTC. Each node synchronizes its

 children nodes.

Secondary servers,
synched by the
primary server

The Network Time Protocol (NTP)

Primary server, direct synch.

Strata 3,
synched by the
secondary
servers

1

2 2 2

3 3 3 3 3 3

Lecture 5-12

Messages Exchanged Between a Pair of NTP

Peers (“Connected Servers”)

T i

T i-1 T i -2

T i - 3

Server B

Server A

Time

m m'

Time

Each message bears timestamps of recent message events: the local time
when the previous NTP message was sent and received, and the local time
when the current message was transmitted.

Lecture 5-13

Theoretical Base for NTP

T i

T i-1 T i -2

T i - 3

Server B

Server A

Time

m m'

Time

• t and t’: actual transmission times
 for m and m’(unknown)
• o: true offset of clock at B
 relative to clock at A
• oi: estimate of actual offset
 between the two clocks
• di: estimate of accuracy of oi ;
 total transmission times for m
 and m’; di=t+t’

i-2T = i-3T + t + o

iT = i-1T + t '-o

This leads to

id = t + t ' = i-2T - i-3T + iT - i-1T

o = io + (t '- t) / 2, where

io = (i-2T - i-3T + i-1T - iT) / 2.

It can then be shown that

io - id / 2 £ o £ io + id / 2.

Lecture 5-14

Logical Clocks

 Is it always necessary to give absolute time to events?

 Suppose we can assign relative time to events, in a way that does

not violate their causality

 Well, that would work – we humans run our lives without looking at our watches for

everything we do

 First proposed by Leslie Lamport in the 70’s

 Define a logical relation Happens-Before () among events:

1. On the same process: a b, if time(a) < time(b)

2. If p1 sends m to p2: send(m) receive(m)

3. (Transitivity) If a b and b c then a c

 Lamport Algorithm assigns logical timestamps to events:

 All processes use a counter (clock) with initial value of zero

 A process increments its counter when a send or an instruction

happens at it. The counter is assigned to the event as its timestamp.

 A send (message) event carries its timestamp

 For a receive (message) event the counter is updated by

 max(local clock, message timestamp) + 1

Lecture 5-15

Events Occurring at Three Processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical

t ime

Lecture 5-16

Lamport Timestamps

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
t ime

Lecture 5-17

Find the Mistake: Lamport Logical Time

p 1

p 2

p 3

p 4

1

2

2

3

3

5
4

5

3

6

4

6 8

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Message
timestamp

Physical Time

4

Lecture 5-18

Corrected Example: Lamport Logical Time

p 1

p 2

p 3

p 4

1

2

2

3

3

5
4

5

7

6

8

9 10

7

0

0

0

0

1

2

4

3 6

7

n Clock Value

Message
timestamp

Physical Time

8

3 and 7 are
logically concurrent
events

Lecture 5-19

Vector Logical Clocks

 With Lamport Logical Timestamp

e f timestamp(e) < timestamp (f), but

timestamp(e) < timestamp (f) {e f} OR {e and f concurrent}

 Vector Logical time addresses this issue:

 N processes. Each uses a vector of counters (logical clocks),

initially all zero. ith element is the clock value for process i.

 Each process i increments the ith element of its vector

 upon an instruction or send event. Vector value is timestamp

 of the event.

 A send(message) event carries its vector timestamp (counter

vector)

 For a receive(message) event,

 Max(Vreceiver[j] , Vmessage[j]), if j is not self

 Vreceiver[j] + 1 otherwise

Vreceiver[j] =

Lecture 5-20

Vector Timestamps

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
t ime

Lecture 5-21

Example: Vector Timestamps

p 1

p 2

p 3

p 4

0,0,0,0

Vector logical clock

Message
(vector timestamp)

Physical Time

0,0,0,0

0,0,0,0

0,0,0,0

(1,0,0,0)

1,0,0,0

1,1,0,0

2,0,0,0

2,0,1,0

(2,0,0,0)

2,0,2,0

2,0,2,1

(2,0,2,0)

1,2,0,0

2,2,3,0

(1,2,0,0)

4,0,2,2

4,2,4,2

(4,0,2,2)

2,0,2,2

3,0,2,2

(2,0,2,2)

2,0,2,3

4,2,5,3

(2,0,2,3)

n,m,p,q

Lecture 5-22

Comparing Vector Timestamps

 VT1 = VT2,

 iff VT1[i] = VT2[i], for all i = 1, … , n

 VT1 < VT2,

 iff VT1[i] < VT2[i], for all i = 1, … , n

 VT1 < VT2,

 iff VT1 < VT2 &

 j (1 < j < n & VT1[j] < VT2 [j])

 Then: VT1 is concurrent with VT2

 iff (not VT1 < VT2 AND not VT2 < VT1)

Lecture 5-23

Side Issue: Causality Violation

P1

P2

P3

1 2

3 4

5

0

0

0

1

2

Physical Time

4
6

Include(obj1)

obj1.method()

P2 has obj1

• Causality violation occurs when order of messages causes an
action based on information that another host has not yet
received.

• In designing a distributed system, potential for causality
violation is important to notice

Lecture 5-24

Detecting Causality Violation

P1

P2

P3

(1,0,0)

(2,0,0)

Physical Time

(2,0,2)

• Potential causality violation can be detected by vector
timestamps.

• If the vector timestamp of a message is less than the local
vector timestamp, on arrival, there is a potential causality
violation.

0,0,0

0,0,0

0,0,0

1,0,0

2,0,1

2,2,2
2,1,2

2,0,2

2,0,0
Violation:

(1,0,0) < (2,1,2)

Lecture 5-25

Summary, Announcements

• Time synchronization important for distributed systems
– Cristian’s algorithm

– Berkeley algorithm

– NTP

• Relative order of events enough for practical purposes
– Lamport’s logical clocks

– Vector clocks

• Next class: Global Snapshots. Reading: 14.5

• HW1 due next Thursday 9/19

• MP1: due this Sunday
– By now, you should have written most of your code.

