
Lecture 27-1 Lecture 27-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

December 3, 2013

Lecture 27

Distributed File Systems
Chapter 12 (relevant parts)

 2013, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 27-2

File Attributes & System Modules

File Attribute
Record

Block Block Block

length

creation timestamp

read timestamp

write timestamp

attribute timestamp

reference count

file type

ownership

access control list

Directory
Module

File
Module

Access
control
Module

File
Access
Module

Block
Module

Device
Module

File System Modules

Lecture 27-3

UNIX File System Operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other links to it, it is deleted from disk.

status = link(name1, name2) Creates a new link (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Lecture 27-4

Distributed File System (DFS) Requirements

 Transparency : server-side changes should be invisible to the
client-side.

 Access transparency: A single set of operations is provided for
access to local/remote files.

 Location Transparency: All client processes see a uniform file
name space.

 Migration Transparency: When files are moved from one server
to another, users should not see it.

 Scaling and Performance Transparency

File Replication
 A file may be represented by several copies for read/write efficiency and

fault tolerance.

 Concurrent File Updates

Changes to a file by one client should not interfere with the operation of
other clients simultaneously accessing the same file.

Lecture 27-5

DFS Requirements (2)

Concurrent File Updates

One-copy update semantics: the file contents seen by all of the
clients accessing or updating a given file are those they would
see if only a single copy of the file existed.

Fault Tolerance
 At most once invocation semantics, e.g., append to file

 At least once semantics. OK for a server protocol designed for
idempotent operations (i.e., duplicated requests do not result in invalid
updates to files), e.g., read at a position in the file

 Security

 Access Control list = per object, list of allowed users and access
allowed to each

 Capability list = per user, list of objects allowed to access and
type of access allowed (could be different for each (user,obj))

 User Authentication: need to authenticate requesting clients so
that access control at the server is based on correct user
identifiers.

 Efficiency

 Whole file vs. block transfer

Lecture 27-6

Basic File Service Model

E.g., SUN NFS (Network File System) and AFS (Andrew File

System)

 An abstract model (Our “Vanilla” Model):

 Flat file service

implements create, delete, read, write, get attribute, set

attribute and access control operations.

 Directory service: is itself a client of (i.e., uses) flat file service.

 Creates and updates directories (hierarchical file structures)

and provides mappings between user names of files and the

unique file ids in the flat file structure.

 Client service/module: A client of directory and flat file services

Runs in each client computer, integrating and expanding flat

file and directory services to provide a unified API (e.g., the

full set of UNIX file operations).

 Holds information about the locations of the flat file server

and directory server processes.

Lecture 27-7

File Service Architecture

Client computer Server computer

Application

program

Application

program

Client module

Flat file service

Directory service

Lecture 27-8

Flat File Service Operations

Read(FileId, i, n) -> Data
— throws BadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throws BadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file size if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId)->Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes

(1) Repeatable operation: No read-write pointer. Except for Create and delete, the
 operations are idempotent, allowing the use of at least once RPC semantics.
(2) Stateless servers: No file descriptors. Stateless servers can be restarted after a
 failure and resume operation without the need to restore any state.

In contrast, the UNIX file operations are neither idempotent nor stateless.

Lecture 27-9

Access Control

• In UNIX, the user’s access rights are checked
against the access mode requested in the open
call and the file is opened only if the user has the
appropriate rights.

• In a distributed file system (DFS), a user identity
has to be passed with requests – server first
authenticates the user.
– An access check is made whenever a file name is converted to

a UFID (unique file id), and the results are encoded in the form
of a capability which is returned to the client for future access.

» Capability = per (user, obj) list of allowed operations. A
signed certificate.

Lecture 27-10

Directory Service Operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, File)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern)->NameSeq Returns all the text names in the directory that match the
regular expression Pattern. Like grep.

(1) Hierarchical file system: The client module provides a function that gets the UFID
of a file given its pathname. The function interprets the pathname starting from
the root, using Lookup to obtain the UFID of each directory in the path.

(2) Each server may hold several file groups, each of which is a collection of files
located on the server. A file group identifier consists of IP address + date, and allows
(i) file groups to migrate across servers, and (ii) clients to access file groups.

Lecture 27-11

Network File System (NFS)

 Application

Program

 Application

Program

Virtual File System

UNIX
File
System

Other
File
System

NFS
Client
System

Client Computer

Virtual File System

NFS
Server
System

UNIX
File
System

Server Computer

NFS
Protocol

UNIX
Kernel

Lecture 27-12

Local and Remote File Systems Accessible

on an NFS client

j i m j a nej o ea nn

u se rss tud e nts

u s rv m u n ix

Cl ie n t Serv e r 2

. . . n fs

Rem o te

m ou n t
s taff

b i g b obj o n

p eo p l e

Serv e r 1

e xp o rt

(roo t)

Rem o te

m ou n t

. . .

x

(roo t) (roo t)

Note: The filesystem mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Hard mounting (retry f.s. request on failure) vs. Soft mounting (return error on f.s. access failure) – Unix is more compatible

 with hard mounting

Lecture 27-13

NFS Client and Server

• Client

– Plays the role of the client module from our vanilla model.

– Integrated with the kernel, rather than being supplied as a library.

– Transfers blocks of files to and from server via RPC. Caches the
blocks in the local memory.

– May support file descriptors

• Server

– Provides a conventional RPC interface at a well-known port on each
host.

– Plays the role of file and directory service modules in our vanilla
model.

– Mounting of sub-trees of remote filesystems by clients is supported by
a separate mount service process on each NFS server.

Lecture 27-14

NFS Server Operations (simplified) – 1

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory

dirfh.

create(dirfh, name, attr) ->

newfh, attr
Creates a new file name in directory dirfh with attributes attr and

returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system

call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time
and modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.

Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the

attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, toname)
-> status

Changes the name of file name in directory dirfh to toname in

directory to todirfh .

link(newdirfh, newname, dirfh, name)
-> status

Creates an entry newname in the directory newdirfh which refers to

file name in the directory dirfh.

Continues on next slide ...

Lecture 27-15

NFS Server Operations (simplified) – 2

symlink(newdirfh, newname, string)
 -> status

Creates an entry newname in the directory newdirfh of type

symbolic link with the value string. The server does not interpret

the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file

identified by fh.

mkdir(dirfh, name, attr) ->

 newfh, attr

Creates a new directory name with attributes attr and returns the

new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.

Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->

 entries

Returns up to count bytes of directory entries from the directory

dirfh. Each entry contains a file name, a file handle, and an opaque

pointer to the next directory entry, called a cookie. The cookie is

used in subsequent readdir calls to start reading from the following

entry. If the value of cookie parameter is 0, it reads from the first entry in the

directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of

free blocks and so on) for the file system containing a file fh.

Lecture 27-16

Network File System (NFS)

 Application

Program

 Application

Program

Virtual File System

UNIX
File
System

Other
File
System

NFS
Client
System

Client Computer

Virtual File System

NFS
Server
System

UNIX
File
System

Server Computer

NFS
Protocol

UNIX
Kernel

Lecture 27-17

NFS Architecture -- VFS

• Virtual file system module
– Translates between NFS file identifiers and other file

systems’s (e.g., UNIX) identifiers.

» The NFS file identifiers are called file handles.

» File handle = Filesystem/file group identifier + i-node
number of file + i-node generation number.

– Keeps track of filesystems (i.e., NFS file groups, different
from a “file system”) that are available locally and
remotely.

» The client obtains the first file handle for a remote
filesystem when it first mounts the filesystem. File handles
are passed from server to client in the results of lookup,
create, and mkdir operation.

– Distinguishes between local and remote files.

Lecture 27-18

NFS Architecture – VFS (2)

• Virtual file system module
– (contd.)

– Distinguishes between local and remote files.

» VFS keeps one VFS structure for each mounted
filesystem and one v-node per open file.

• A VFS structure relates a remote filesystem to the local
directory on which it is mounted.

• A v-node contains an indicator to show whether a file is local
or remote.

– If the file is local, it contains a reference to the i-node.

– Otherwise if the file is remote, it contains the file handle
of the remote file.

Lecture 27-19

Server Caching
• File pages, directories and file attributes that have

been read from the disk are retained in a main
memory buffer cache.

• Read-ahead anticipates read accesses and
fetches the pages following those that have most
recently been read.

• In delayed-write, when a page has been altered,
its new contents are written back to the disk only
when the buffered page is required for another
client.
– In comparison, Unix sync operation writes pages to disk every

30 seconds

• In write-through, data in write operations is stored
in the memory cache at the server immediately
and written to disk before a reply is sent to the
client.
– Better strategy to ensure data integrity even when server

crashes occur. But more expensive. (remember CAP
theorem?)

Lecture 27-20

Client Caching

• A timestamp-based method is used to validate
cached blocks before they are used.

• Each data item in the cache is tagged with
– Tc: the time when the cache entry was last validated.

– Tm: the time when the block was last modified at the server.

– A cache entry at time T is valid if

(T-Tc < t) or (Tm client = Tm server).

– t=freshness interval

» Compromise between consistency and efficiency

» Sun Solaris: t is set adaptively between 3-30 seconds for
files, 30-60 seconds for directories

Lecture 27-21

Client Caching (Cont’d)

• When a cache entry is read, a validity check is
performed.
– If the first half of validity condition (previous slide) is true, the

the second half need not be evaluated.

– If the first half is not true, Tm server is obtained (via getattr() to
server) and compared against Tm client

• When a cached page (not the whole file) is
modified, it is marked as dirty and scheduled to
be flushed to the server.
– Modified pages are flushed when the file is closed or a sync

occurs at the client.

• Does not guarantee one-copy update semantics.

• More details in textbook

Lecture 27-22

Andrew File System (AFS)

• Two unusual design principles:

– Whole file serving

» Not in blocks

– Whole file caching

» Permanent cache, survives reboots

• Based on (validated) assumptions that

– Most file accesses are by a single user

– Most files are small

– Even a client cache as “large” as 100MB is supportable (e.g., in RAM)

– File reads are much more often that file writes, and typically sequential

• We’ll see overview only

Lecture 27-23

Distribution of Processes in the Andrew File

System

Venus

Works tations Servers

Venus

VenusUser
program

Netw ork

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Vice and Venus
are Unix processes

Lecture 27-24

System Call Interception in AFS

UNIX f ile
system calls

Non-local f ile
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX f ile system

Venus

Modified version of BSD, designed to
intercept open, close, and some other file
system calls.

Lecture 27-25

Implementation of File System Calls in AFS
User process UNIX kernel Venus Net Vi ce

open(FileName,
mode)

If Fi leName refers to a
fi le in shared file space,
pass the request to

Venus.

Open t he local file and
return the fil e

descriptor t o t he
appli cati on.

Check li st of files in
local cache. If not
present or t here i s no
valid callback promi se,

send a request for the
fi le to the Vice server

that is custodian of t he
volume containing the
fi le.

Pl ace t he copy of the
fi le in the local fil e
syst em, enter its local
name i n t he local cache

list and return the local
name t o UN IX.

Transfer a copy of the

fi le and a callback
promise to the
workst at ion. Log the

callback promise.

read(Fil eDescriptor,
Buffer, l ength)

Perform a normal
UNIX read operation

on t he local copy.

write(Fi leDescri ptor,

Buffer, l ength)

Perform a normal

UNIX write operation
on t he local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the fi le has been closed. If the local copy has

been changed, send a
copy to the Vice server

that is the custodian of
the fi le.

Replace the file

contents and send a
callback to all other
clients holdingcallback

promises on the file.

Callback promise=
Server will call client if
there is a change in the
file. Will set its state to
canceled.

Callback promise
state (token) for file is
binary:
valid or canceled.

Lecture 27-26

Summary

• Distributed File systems design

• Vanilla file system

• NFS

• AFS

Lecture 27-27

Reminders

• HW4 due this Thursday

• MP4 due this Sunday (demos on Monday)

• Mandatory to attend next Tuesday’s lecture:
semester’s last lecture

• Final exam posted on Course Schedule

• Conflict exam
– Please email course staff email by this Thursday (Dec 5) if you feel

you might need to take a conflict exam

