Computer Science 425 Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)
November 21, 2013
Lecture 26
Self-Stabilization
Reading: Relevant sections from Ghosh's textbook

Motivation

- As the number of computing elements increase in distributed systems failures become more common
- We desire that fault-tolerance should be automatic, without external intervention
- Two kinds of fault tolerance
- masking: application layer does not see faults, e.g., redundancy and replication
- non-masking: system deviates, deviation is detected and then corrected: e.g., roll back and recovery
- Self-stabilization is a general technique for non-masking distributed systems
- We deal only with transient failures which corrupt data, but not crash-stop failures

Self-stabilization

- Technique for spontaneous healing
- Guarantees eventual safety following failures

Feasibility demonstrated by Dijkstra (CACM `74)

Self-stabilizing systems

- Recover from any initial configuration to a legitimate configuration in a bounded number of steps, as long as the processes are not further corrupted
- Assumption:

Failures affect the state (and data) but not the program code

Self-stabilizing systems

- The ability to spontaneously recover from any initial state implies that no initialization is ever required.
- Such systems can be deployed ad hoc, and are guaranteed to function properly within bounded number of steps
- Guarantees-fault tolerance when the mean time between failures (MTBF) >> mean time to recovery (MTTR)

Self-stabilizing systems

- Self-stabilizing systems exhibit non-masking fault-tolerance
- They satisfy the following two criteria
- Convergence
- Closure

Example 1:
 Stabilizing mutual exclusion in unidirectional ring

Consider a unidirectional ring of processes.
Counter-clockwise ring.
One special process (yellow above) is process with id=0
Legal configuration = exactly one token in the ring (Safety) Desired "normal" behavior: single token circulates in the ring

Dijkstra's stabilizing mutual exclusion

N processes: $0,1, \ldots, \mathrm{~N}-1$ state of process j is $x[j] \in\{0,1,2, K-1\}$, where $K>N$

p_{0} if $x[0]=x[N-1]$ then $x[0]:=x[0]+1$

Wrap-around after K-1
TOKEN is @ a process p = "if" condition is true @ process p
Legal configuration: only one process has token
Can start the system from an arbitrary initial configuration

Example execution

$p_{0} \quad$ if $x[0]=x[N-1]$ then $x[0]:=x[0]+1$
$p_{j} j>0$ if $\times[j] \neq x[j-1]$ then $x[j]:=x[j-1]$

Stabilizing execution

$p_{0} \quad$ if $x[0]=x[N-1]$ then $x[0]:=x[0]+1$
$p_{j} j>0$ if $\times[j] \neq x[j-1]$ then $x[j]:=x[j-1]$

What Happens

- Legal configuration = a configuration with a single token
- Perturbations or failures take the system to configurations with multiple tokens
- e.g. mutual exclusion property may be violated

- Within finite number of steps, if no further failures occur, then the system returns to a legal configuration

Why does it work ?

1. At any configuration, at least one process can make a move (has token)
2. Set of legal configurations is closed under all moves
3. Total number of possible moves from (successive configurations) never increases
4. Any illegal configuration C converges to a legal configuration in a finite number of moves

5. At any configuration, at least one process can make a move (has token), i.e., if condition is false at all processes

- Proof by contradiction: suppose no one can make a move
- Then p_{1}, \ldots, p_{N-1} cannot make a move
- Then $x[\mathrm{~N}-1]=x[\mathrm{~N}-2]=\ldots x[0]$
- But this means that p_{0} can make a move $=>$ contradiction

$$
p_{0} \quad \text { if } x[0]=x[N-1] \text { then } x[0]:=x[0]+1
$$

$$
p_{j} \mathrm{j}>0 \text { if } x[j] \neq x[j-1] \text { then } x[j]:=x[j-1]
$$

Why does it work ?

1. At any configuration, at least one process can make a move (has token)
2. Set of legal configurations is closed under all moves

- If only p_{0} can make a move, then for all $\mathrm{i}, \mathrm{j}: \mathrm{x}[\mathrm{i}]=\mathrm{x}[\mathrm{j}]$. After $\boldsymbol{p}_{0}{ }^{\prime} \mathrm{s}$ move, only p_{1} can make a move
- If only pi (i¥0) can make a move
" for all $\mathrm{j}<\mathrm{i}, \mathrm{x}[\mathrm{j}]=\mathrm{x}[\mathrm{i}-1]$
" for all $k \geq i, x[k]=x[i]$, and
" $\quad \mathrm{x}[\mathrm{i}-1] \neq \mathrm{x}[\mathrm{i}]$
" $\mathbf{x [0]} \neq \mathbf{x}[\mathrm{N}-1]$
in this case, after $\boldsymbol{p}_{i}^{\prime}$'s move only \boldsymbol{p}_{i+1} can move
$p_{0} \quad$ if $x[0]=x[N-1]$ then $x[0]:=x[0]+1$
$p_{j} j>0$ if $x[j] \neq x[j-1]$ then $x[j]:=x[j-1]$

Why does it work ?

1. At any configuration, at least one process can make a move (has token)
2. Set of legal configurations is closed under all moves
3. Total number of possible moves from
(successive configurations) never increases

- any move by p_{i} either enables a move for p_{i+1} or none at all

$$
\begin{aligned}
& p_{0} \quad \text { if } x[0]=x[N-1] \text { then } x[0]:=x[0]+1 \\
& \left.p_{j} j>0 \text { if } x[]\right] \neq x[j-1] \text { then } x[j]:=x[j-1]
\end{aligned}
$$

Why does it work ?

1. At any configuration, at least one process can make a move (has token)
2. Set of legal configurations is closed under all moves
3. Total number of possible moves from (successive configurations) never increases
4. Any illegal configuration C converges to a legal configuration in a finite number of moves

- \quad There must be a value, say v, that does not appear in C (since $K>N$)
- Except for p_{0}, none of the processes create new values (since they only copy values)
- Thus p_{0} takes infinitely many steps, and since it only self-increments, it eventually sets $x[0]=v$ (within K steps)
- Soon after, all other processes copy value v and a legal configuration is reached in N -1 steps
$p_{0} \quad$ if $x[0]=x[N-1]$ then $x[0]:=x[0]+1$
$p_{j} \mathrm{j}>0$ if $\times[j] \neq \mathrm{x}[\mathrm{j}-1]$ then $\mathrm{x[j]}:=\mathrm{x}[\mathrm{j}-1]$

Putting it All Together

- Legal configuration = a configuration with a single token
- Perturbations or failures take the system to configurations with multiple tokens
- e.g. mutual exclusion property may be violated
fault

Within finite number of steps, if no further failures occur, then the system returns to a legal configuration

closure

Summary

- Many more self-stabilizing algorithms
- Self-stabilizing distributed spanning tree
- Self-stabilizing distributed graph coloring
- Not covered in the course - look them up on the web!
- Reading for this lecture: Ghosh's textbook chapter
- But only what's on the slides is material

Reminders

- MP4, HW4 due soon after break
- Only 3 lectures left!
- Have a good Thanksgiving break!
- (No lectures or office hours next week)

