
Lecture 26-1

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

Indranil Gupta (Indy)

November 21, 2013

Lecture 26

Self-Stabilization
Reading: Relevant sections from Ghosh’s textbook

© Indranil Gupta, Sayan Mitra

Lecture 26-2

Motivation

• As the number of computing elements increase in distributed
systems failures become more common

• We desire that fault-tolerance should be automatic, without
external intervention

• Two kinds of fault tolerance

– masking: application layer does not see faults, e.g., redundancy and
replication

– non-masking: system deviates, deviation is detected and then
corrected: e.g., roll back and recovery

• Self-stabilization is a general technique for non-masking
distributed systems

• We deal only with transient failures which corrupt data, but not
crash-stop failures

Lecture 26-3

Self-stabilization

• Technique for spontaneous healing

• Guarantees eventual safety following

failures

 Feasibility demonstrated by Dijkstra

(CACM `74)

E. Dijkstra

Lecture 26-4

Self-stabilizing systems

• Recover from any initial configuration to a legitimate

configuration in a bounded number of steps, as long as

the processes are not further corrupted

• Assumption:

 Failures affect the state (and data) but not the program

code

Lecture 26-5

Self-stabilizing systems

• The ability to spontaneously recover from any

initial state implies that no initialization is ever

required.

• Such systems can be deployed ad hoc, and are

guaranteed to function properly within

bounded number of steps

• Guarantees-fault tolerance when the mean time

between failures (MTBF) >> mean time to

recovery (MTTR)

Lecture 26-6

Self-stabilizing systems

• Self-stabilizing systems exhibit

non-masking fault-tolerance

• They satisfy the following two

criteria

– Convergence

– Closure

Not L L

convergence

closure

fault

Lecture 26-7

Example 1:

Stabilizing mutual exclusion in

unidirectional ring

0
1 6 2 4

7
5 3

N-1

Consider a unidirectional ring of processes.

Counter-clockwise ring.

One special process (yellow above) is process with id=0

Legal configuration = exactly one token in the ring (Safety)
Desired “normal” behavior: single token circulates in the ring

Lecture 26-8

Dijkstra’s stabilizing mutual

exclusion

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Wrap-around after K-1

N processes: 0, 1, …, N-1

state of process j is x[j] {0, 1, 2, K-1}, where K > N

TOKEN is @ a process p = “if” condition is true @ process p

Legal configuration: only one process has token

Can start the system from an arbitrary initial configuration

Lecture 26-9

Example execution

0

0

0

0

0

0 1

0

0

0

0

0 1

1

0

0

0

0

1

1

1

1

1

1 2

1

1

1

1

1 K-1

K-1

K-1

K-1

K-1

K-1

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-10

Stabilizing execution

0

1

0

1

4

0 0

0

0

1

4

0 0

0

4

1

4

0

0

0

4

0

4

0 0

0

4 0

0

0

0

0

0

0

0

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-11

What Happens

• Legal configuration = a
configuration with a single token

• Perturbations or failures take the
system to configurations with
multiple tokens
– e.g. mutual exclusion property may be

violated

• Within finite number of steps, if no
further failures occur, then the
system returns to a legal
configuration

Not L L

convergence

closure

fault

Lecture 26-12

Why does it work ?

1. At any configuration, at least one process can
make a move (has token)

2. Set of legal configurations is closed under all
moves

3. Total number of possible moves from
(successive configurations) never increases

4. Any illegal configuration C converges to a legal
configuration in a finite number of moves

1

1

0

0

0

0

Lecture 26-13

Why does it work ?

1. At any configuration, at least one process can
make a move (has token), i.e., if condition is
false at all processes

– Proof by contradiction: suppose no one can make a move

– Then p1,…,pN-1 cannot make a move

– Then x[N-1] = x[N-2] = … x[0]

– But this means that p0 can make a move => contradiction

1

1

0

0

0

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-14

Why does it work ?

1. At any configuration, at least one process can make a
move (has token)

2. Set of legal configurations is closed under all moves
– If only p0 can make a move, then for all i,j: x[i] = x[j]. After p0’s move,

only p1 can make a move

– If only pi (i≠0) can make a move

» for all j < i, x[j] = x[i-1]

» for all k ≥ i, x[k] = x[i], and

» x[i-1] ≠ x[i]

» x[0] ≠ x[N-1]

in this case, after pi‘s move only pi+1 can move

1

1

0

0

0

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-15

Why does it work ?

1. At any configuration, at least one process can
make a move (has token)

2. Set of legal configurations is closed under all
moves

3. Total number of possible moves from
(successive configurations) never increases

– any move by pi either enables a move for pi+1 or none at all

1

1

0

0

0

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-16

Why does it work ?

1. At any configuration, at least one process can make a move (has token)

2. Set of legal configurations is closed under all moves

3. Total number of possible moves from (successive configurations) never
increases

4. Any illegal configuration C converges to a legal configuration in
a finite number of moves

– There must be a value, say v, that does not appear in C (since K > N)

– Except for p0, none of the processes create new values (since they only copy
values)

– Thus p0 takes infinitely many steps, and since it only self-increments, it
eventually sets x[0] = v (within K steps)

– Soon after, all other processes copy value v and a legal configuration is
reached in N-1 steps

1

1

0

0

0

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

Lecture 26-17

Putting it All Together

• Legal configuration = a
configuration with a single token

• Perturbations or failures take the
system to configurations with
multiple tokens
– e.g. mutual exclusion property may be

violated

• Within finite number of steps, if no
further failures occur, then the
system returns to a legal
configuration

Not L L

convergence

closure

fault

Lecture 26-18

Summary

• Many more self-stabilizing algorithms
– Self-stabilizing distributed spanning tree

– Self-stabilizing distributed graph coloring

– Not covered in the course – look them up on the web!

• Reading for this lecture: Ghosh’s textbook
chapter
– But only what’s on the slides is material

Lecture 26-19

Reminders

• MP4, HW4 due soon after break

• Only 3 lectures left!

• Have a good Thanksgiving break!

• (No lectures or office hours next week)

