
Indranil Gupta (Indy)

October 1, 2013

Lecture 11

Peer-to-peer Systems II

Reading: Chord paper on website (Sec 1-4, 6-7)

 2013, I. Gupta

Computer Science 425

Distributed Systems

CS 425 / ECE 428

Fall 2013

2

Systems that work well in practice but with

no big/famous names

• Non-academic P2P systems

e.g., Napster, Gnutella, BitTorrent

 (previous lecture)

Systems with big/famous names

from academia, with varied uses

• Academic P2P systems

 e.g., Chord (this lecture)

Two types of P2P Systems

3

DHT=Distributed Hash Table
• A hash table allows you to insert, lookup and delete

objects with keys

• A distributed hash table allows you to do the same in a
distributed setting (objects=files)

• DHTs are inspiration for key-value store in a cloud

• Performance Concerns:
– Load balancing

– Fault-tolerance

– Efficiency of lookups and inserts

• Napster, Gnutella, FastTrack are all DHTs (sort of)

• So is Chord, a structured peer to peer system that we study
next

4

Comparative Performance

Memory Lookup

Latency

#Messages

for a lookup

Napster O(1)

(O(N)@server)

O(1)

O(1)

Gnutella O(N) O(N) O(N)

5

Comparative Performance

Memory Lookup

Latency

#Messages

for a lookup

Napster O(1)

(O(N)@server)

O(1)

O(1)

Gnutella O(N) O(N) O(N)

Chord O(log(N)) O(log(N)) O(log(N))

6

Chord

• Developers: I. Stoica, D. Karger, F. Kaashoek, H.
Balakrishnan, R. Morris, Berkeley and MIT

• Intelligent choice of neighbors to reduce latency and
message cost of routing (lookups/inserts)

• Uses Consistent Hashing on node’s (peer’s) address

– SHA-1(ip_address,port) 160 bit string

– Truncated to m bits

– Called peer id (number between 0 and)

– Not unique but id conflicts very unlikely (m ~ 128)

– Can then map peers to one of logical points on a circle m2

12 m

7

Ring of peers

N80

N112

N96

N16
0

Say m=7

N32

N45

6 nodes

8

Peer pointers (1): successors

N80

0
Say m=7

N32

N45

N112

N96

N16

(similarly predecessors)

9

Peer pointers (2): finger tables

N80
80 + 20

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

0
Say m=7

N32

N45

ith entry at peer with id n is first peer with id >=

n + 2i(mod2m)

N112

N96

N16
i ft[i]

0 96

1 96

2 96

3 96

4 96

5 112

6 16

Finger Table at N80

10

What about the files?

• Filenames also mapped using same consistent
hash function
– SHA-1(filename) 160 bit string (key), truncate to m

– File is stored at first peer with id greater than its key
(mod)

• File cnn.com/index.html that maps to key K42 is stored
at first peer with id greater than 42
– If you store webpages this way, it’s called cooperative

web caching (~ Memcached architecture)

– Generic though

2m

11

Mapping Files

N80

0
Say m=7

N32

N45

File with key K42

stored here

N112

N96

N16

12

Search

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

Who has cnn.com/index.html?

(hashes to K42)

N112

N96

N16

13

Search

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k

 if none exist, send query to successor(n)

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

14

Search

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

At node n, send query for key k to largest successor/finger entry <= k

 if none exist, send query to successor(n)

All “arrows” are RPCs

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

15

Analysis

Search takes O(log(N)) time

Proof

– (intuition): at each step, distance between query and peer-

with-file reduces by a factor of at least 2 (why?)

 Takes at most m steps: is at most a constant

multiplicative factor above N, lookup is O(log(N))

– (intuition): after log(N) forwardings, distance to key is at

most (why?)

 Number of node identifiers in a range of

 is O(log(N)) with high probability (why? SHA-1!)

 So using successors in that range will be ok

Nm /2

Nm /2

m2

Here

Next hop

Key

16

Analysis (contd.)

• O(log(N)) search time holds for file insertions too

(in general for routing to any key)

– “Routing” can thus be used as a building block for

• All operations: insert, lookup, delete

• O(log(N)) time true only if finger and successor

entries correct

• When might these entries be wrong?

– When you have failures

17

Search under peer failures

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

X
X

X

Lookup fails

(N16 does not know N45)

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

18

Search under peer failures

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

X

One solution: maintain r multiple successor entries

 In case of failure, use successor entries

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

19

Search under peer failures

• Choosing r=2log(N) suffices to maintain

lookup correctness w.h.p.

– Say 50% of nodes fail

– Pr(at given node, at least one successor alive)=

– Pr(above is true at all alive nodes)=

2

log2 1
1)

2

1
(1

N

N 

1)
1

1(2

1

2/

2



NN e

N

20

Search under peer failures (2)

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

X

X

Lookup fails

(N45 is dead)

N112

N96

N16

Who has cnn.com/index.html?

(hashes to K42)

21

Search under peer failures (2)

N80

0
Say m=7

N32

N45

File cnn.com/index.html with

key K42 stored here

X

One solution: replicate file/key at r successors and

predecessors

N112

N96

N16

K42 replicated

K42 replicated

Who has cnn.com/index.html?

(hashes to K42)

22

Need to deal with dynamic

changes
 Peers fail

• New peers join

• Peers leave
– P2P systems have a high rate of churn (node join, leave and

failure)
• 25% per hour in Overnet (eDonkey)

• 100% per hour in Gnutella

• Lower in managed clusters, e.g., CSIL

• Common feature in all distributed systems, including clouds

So, all the time, need to:

 Update successors and fingers, and copy keys

23

New peers joining

N80

0
Say m=7

N32

N45

N112

N96

N16

N40

Introducer directs N40 to N45 by routing to K40

N32 updates successor to N40

N40 initializes successor to N45, and inits fingers from it

N40 periodically talks to its neighbors to update finger table

Stabilization

Protocol

(followed by

all nodes all

the time)

24

New peers joining (2)

N80

0
Say m=7

N32

N45

N112

N96

N16

N40

N40 may need to copy some files/keys from N45

(files with fileid between 32 and 40)

K34,K38

25

New peers joining (3)

• A new peer affects O(log(N)) other finger entries
in the system, on average [Why?]

• Number of messages per peer join=
O(log(N)*log(N))

• Similar set of operations for dealing with peers
leaving

– For dealing with failures, need to couple above
mechanisms with failure detectors

26

Experimental Results

• Sigcomm 01 paper had results from

simulation of a C++ prototype

• SOSP 01 paper had more results from a 12-

node Internet testbed deployment

• We’ll touch briefly on the first set

• 10000 peer system

27

Lookups

A
v
e
ra

g
e
 M

e
ss

a
g
e
s

p
e
r

L
o
o
k
u
p

Number of Nodes

log, as expected

28

Fault-tolerance

500 nodes (avg. path len=5)

Stabilization runs every 30 s

1 joins&fails every 10 s

(3 fails/stabilization round)

 => 6% lookups fail

29

Wrap-up Notes

• Memory: O(log(N)) successor pointer, m finger entries

• Indirection: store a pointer instead of the actual file

• Does not handle partitions (can you suggest a possible

solution?)

30

Summary of Chord

• Chord protocol

– More structured than Gnutella

– O(log(N)) memory and lookup cost

– Simple lookup algorithm, rest of protocol

complicated

– Stabilization works, but how far can it go?

31

Wrap-up Notes

Applies to all p2p systems

• How does a peer join the system

– Send an http request to well-known url for that P2P
service - http://www.myp2pservice.com

– Message routed (after DNS lookup) to a well known
server which then initializes new peers’ neighbor table

– Server only maintains a partial list of online clients

32

Announcements
• Next lecture – Mutual Exclusion

– Reading: Sections 15.2

• MP2

– By now you should have a working heartbeat

mechanism, and by Thursday you should have finished

everything

– Due 10/6 mifnight

– Demos on Monday 10/7 – watch Piazza for signup

sheet

• Midterm Exam is Oct 15th during class hours

– All material until Lecture 12

– Location may be same or different (watch Piazza)

Optional Slides

33

34

Stabilization Protocol

• Concurrent peer joins, leaves, failures might cause
loopiness of pointers, and failure of lookups

– Chord peers periodically run a stabilization algorithm that
checks and updates pointers and keys

– Ensures non-loopiness of fingers, eventual success of
lookups and O(log(N)) lookups w.h.p.

– [TechReport on Chord webpage] defines weak and strong
notions of stability

– Each stabilization round at a peer involves a constant
number of messages

– Strong stability takes stabilization rounds (!)

)(2NO

