
Indranil Gupta (Indy)

September 25, 2012

Lecture 9

Peer-to-peer Systems I

Reading: Gnutella paper on website

 2012, I. Gupta

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

2

Why Study Peer to peer (P2P)

systems?
• To understand how they work

• To understand the techniques and principles
within them

• To modify, adapt, reuse these techniques and
principles in other related areas
– Cloud computing: key-value stores borrow heavily

from p2p systems

– To build your own p2p system

• To grow the body of knowledge about distributed
systems

3

Some Questions

• Why do people get together?

– to share information

– to share and exchange resources they have

• books, class notes, experiences, videos, music cd’s

• How can computers help people

– find information

– find resources

– exchange and share resources

4

• Existing technologies: The Web!

– Search engines

– Forums: chat rooms, blogs, ebay

– Online business

• But, the web is heavy weight if you want specific
resources: say a Beatles’ song “PennyLane”

• A search engine will give you their bio, lyrics,
chords, articles on them, and then perhaps the mp3

• But you want only the song, nothing else!

• If you can find a peer who has a copy of the
Beatles song (mp3), perhaps in exchange for
your UIUC Homeocoming videos, that would
be great!

– Napster: a solution light weight that was lighter
than the Web

5

6

A Brief History

• [6/99] Shawn Fanning (freshman Northeastern U.) releases
Napster online music service

• [12/99] RIAA sues Napster, asking $100K per download

• [3/00] 25% UWisc traffic Napster, many universities ban it

• [00] 60M users

• [2/01] US Federal Appeals Court: users violating copyright
laws, Napster is abetting this

• [9/01] Napster decides to run paid service, pay % to
songwriters and music companies

• [Today] Napster protocol is open, people free to develop
opennap clients and servers
http://opennap.sourceforge.net

7

Napster Structure

S

S

S

P

P

P P

P

P

Client machines

(“Peers”)

napster.com Servers

Store their own

files

Store a directory, i.e.,

filenames with peer pointers

Filename Info about

PennyLane.mp3 Beatles, @

 128.84.92.23:1006

 …..

8

Napster Operations
Client

• Connect to a Napster server

• Upload list of music files that you want to share

– Server maintains list of <filename, ip_address,
portnum> tuples. Server stores no files.

• Search

– Send server keywords to search with

– (Server searches its list with the keywords)

– Server returns a list of hosts - <ip_address, portnum>
tuples - to client

– Client pings each host in the list to find transfer rates

– Client fetches file from best host

• All communication uses TCP

9

Napster Search

S

S

S

P

P

P P

P

P

Peers

napster.com Servers

Store their own

files

Store peer pointers

for all files

3. Response 1. Query

2. All servers search their lists (ternary tree algo.)

4. ping candidates
5. download from best host

10

Problems

• Centralized server a source of congestion

• Centralized server single point of failure

• No security: plaintext messages and

passwds

• Courts declared napster.com responsible for

users’ copyright violation

– “Indirect infringement”

11

Gnutella

• Eliminate the servers

• Client machines search and retrieve amongst
themselves

• Clients act as servers too, called servents

• [3/00] release by AOL, 88K users by 3/03

• Original design underwent several modifications

• Available as an open protocol today

http://www.limewire.com

12

Gnutella

P

P

P

P

P

P

Servents (“Peers”)

P

Connected in an overlay graph

 (== each link is an implicit Internet path)

Store their own

files

Also store

“peer pointers”

13

How do I search for my Beatles

file?
• Gnutella routes different messages within the overlay

graph

• Gnutella protocol has 5 main message types

– Query (search)

– QueryHit (response to query)

– Ping (to probe network for other peers)

– Pong (reply to ping, contains address of another peer)

– Push (used to initiate file transfer)

• We’ll go into the message structure and protocol now

(note: all fields except IP address are in little-endian format)

14

Descriptor ID Payload descriptor TTL Hops Payload length

Descriptor Header

Type of payload

0x00 Ping

0x01 Pong

0x40 Push

0x80 Query

0x81 Queryhit

Decremented at each hop,

Message dropped when ttl=0

ttl_initial usually 7 to 10

Incremented at each hop

ID of this

search

transaction

Number of bytes of

message following

this header

0 15 16 17 18 22

Payload

Gnutella Message Header Format

15

 Minimum Speed Search criteria (keywords)

Query (0x80)

0 1 …..

Payload Format in Gnutella Query Message

16

Gnutella Search

P

P

P

P

P

P

P
Who has PennyLane.mp3?

Query’s flooded out, ttl-restricted, forwarded only once

TTL=2

17

Num. hits port ip_address speed (fileindex,filename,fsize) servent_id

0 1 3 7 11 n n+16

QueryHit (0x81) : successful result to a query

Results

Unique identifier of responder;

a function of its IP address

Info about

responder

Payload Format in Gnutella Query Reply Message

18

Gnutella Search

P

P

P

P

P

P

P
Who has PennyLane.mp3?

Successful results QueryHit’s routed on reverse path

19

Avoiding excessive traffic
To avoid duplicate transmissions, each peer

maintains a list of recently received messages

• Query forwarded to all neighbors except peer from
which received

• Each Query (identified by DescriptorID)
forwarded only once

• QueryHit routed back only to peer from which
Query received with same DescriptorID

– If neighbor does not exist anymore, drop QueryHit

• Duplicates with same DescriptorID and Payload
descriptor (msg type) are dropped

• QueryHit with DescriptorID for which Query not
seen is dropped

20

After receiving QueryHit messages
• Requestor chooses “best” QueryHit responder

– Initiates HTTP request directly to responder’s ip+port

 GET /get/<File Index>/<File Name>/HTTP/1.0\r\n

 Connection: Keep-Alive\r\n

 Range: bytes=0-\r\n

 User-Agent: Gnutella\r\n

 \r\n

• Responder then replies following start message, followed
by packets containing file:

 HTTP 200 OK\r\n

 Server: Gnutella\r\n

 Content-type:application/binary\r\n

 Content-length: 1024 \r\n

 \r\n

• HTTP is the file transfer protocol. Why?

• Why the “range” field in the GET request?

• What if responder is behind firewall that disallows
incoming connections?

21

Dealing with Firewalls

P

P

P

P

P

P

P

Requestor sends Push to responder asking for file transfer

Has PennyLane.mp3

But behind firewall

(Why is the Push routed and not sent directly?)

22

servent_id fileindex ip_address port

Push (0x40)

same as in

received QueryHit Address at which

requestor can accept

incoming connections

23

• Responder establishes a TCP connection at
ip_address, port specified. Sends

 GIV <File Index>:<Servent Identifier>/<File Name>\n\n

• Requestor then sends GET to responder (as
before) and file is transferred

• What if requestor is behind firewall too?

– Gnutella gives up

– Can you think of an alternative solution?

24

Ping-Pong

•P2P systems have churn – peers continuously joining,
leaving, and failing

•Peers initiate Ping’s periodically

•Ping’s flooded out like Query’s, Pong’s routed along
reverse path (like QueryHit’s)

•Pong replies used to update set of neighboring peers

•to keep neighbor lists fresh in spite of churn

Port ip_address Num. files shared Num. KB shared

Pong (0x01)

Ping (0x00)

 no payload

25

Gnutella Summary
• No servers

• Peers/servents maintain “neighbors”, this forms an
overlay graph

• Peers store their own files

• Queries flooded out, ttl restricted

• QueryHit (replies) reverse path routed

• Supports file transfer through firewalls

• Periodic Ping-pong to continuously refresh
neighbor lists

– List size specified by user at peer : heterogeneity means
some peers may have more neighbors

– Gnutella found to follow power law distribution:

 P(#links = L) ~ (k is a constant)

kL

26

Problems

• Ping/Pong constituted 50% traffic

– Solution: Multiplex, cache and reduce frequency of
pings/pongs

• Repeated searches with same keywords

– Solution: Cache Query, QueryHit messages

• Modem-connected hosts do not have enough
bandwidth for passing Gnutella traffic

– Solution: use a central server to act as proxy for such
peers

– Another solution:

FastTrack System (in a few slides)

27

Problems (contd.)

• Large number of freeloaders

– 70% of users in 2000 were freeloaders

– Only download files, never upload own files

– Endemic to all p2p systems in deployment

• Flooding causes excessive traffic

– Is there some way of maintaining meta-information

about peers that leads to more intelligent routing?

  Structured Peer-to-peer systems

 e.g., Chord System (next lecture)

28

FastTrack

• Hybrid between Gnutella and Napster

• Takes advantage of “healthier” participants in the

system

• Underlying technology in Kazaa, KazaaLite,

Grokster

• Proprietary protocol, but some details available

• Like Gnutella, but with some peers designated as

supernodes

29

A FastTrack-like System

P
P

P

P

Peers

S

S

Supernodes
P

30

FastTrack (contd.)

• A supernode stores a directory listing
(<filename,peer pointer>), similar to Napster servers

• A peer searches by contacting a nearby supernode

• Supernode membership changes over time

• Any peer can become (and stay) a supernode,
provided it has earned enough reputation

– Kazaalite: participation level (=reputation) of a user
between 0 and 1000. Initially 10, then affected by length of
periods of connectivity and total number of uploads.

– More sophisticated Reputation schemes invented,
especially based on economics

31

BitTorrent – A Quick Overview

Tracker, per file

Peer

Peer

Peer

Peer

Website links to

.torrent

(leecher,

has some blocks)
(seed)

(seed,

has full file)

(new, leecher)

1. Get tracker
2. Get peers

3. Get file blocks

(receives

heartbeats, joins and leaves

from peers)

32

BitTorrent – A Quick Overview (2)
• File split into blocks (32 KB – 256 KB)

• Download Local Rarest First block policy: prefer early
download of blocks that are least replicated among neigh
bors
– Exception: New node allowed to pick one random neighbor: helps

in bootstrapping

• Tit for tat bandwidth usage: Provide blocks to neighbors
that provided it the best download rates
– Incentive for nodes to provide good download rates

– Seeds do the same too

• Choking: Limit number of neighbors to which concurrent
uploads <= a number (5), i.e., the “best” neighbors
– Everyone else choked

– Periodically re-evaluate this set (e.g., 10 s)

– Optimistic unchoke: periodically (e.g., ~30 s), unchoke a random
neigbhor – helps keep unchoked set fresh

33

Wrap-up Notes

Applies to all p2p systems

• How does a peer join the system

– Send an http request to well-known url for that P2P
service - http://www.myp2pservice.com

– Message routed (after DNS lookup) to a well known
server which then initializes new peers’ neighbor table

– Server only maintains a partial list of online clients

• Lookups can be speeded up by having each peer
cache:

– Queries and their results that it sees

– All directory entries (filename,host) mappings that it
sees

– The files that pass through it

34

Summary

• Napster: protocol overview, more details available on
webpage

• Gnutella protocol

• FastTrack protocol

• Protocols continually evolving, software for new
clients and servers conforming to respective
protocols: developer forums at

– Napster: http://opennap.sourceforge.net

– Gnutella: http://www.limewire.com

• Others

– Peer to peer working groups: http://p2p.internet2.edu

35

For Next Lecture

• Read “Chord” paper from website

– Sections 1-4, 6-7

• MP2 and HW2 out

– By now, you should have an initial design for MP2.

