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RMI/RPC - Motivation 
•  You write a program where objects call each other 
•  Works well if the program runs on one process 
•  What if you split your objects across multiple 

processes?  
•  Can Object1’s still call Object2.MethodA()? 
•  Why (not)? 
•  Solution 

–  RMIs: Remote Method Invocations (Object-based) 
–  RPCs: Remote Procedure Calls (non-Object-based) 

v  Access libraries of reusable code across hosts 
v Pros 

q  Supports code reuse 
q  Standard interface, independent of applications and OS’s 
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Middleware Layers 
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Local Objects 

•  Within one process’ address space 
•  Object 

–  consists of a set of data and a set of methods. 
–  E.g., C++ object, Java object. 

•  Object reference 
–  an identifier via which objects can be accessed. 
–  i.e., a pointer (e.g., virtual memory address within process) 

•  Interface 
–  provides a definition of the signatures of a set of methods (i.e., 

the types of their arguments, return values, and exceptions) 
without specifying their implementation.  
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Remote Objects 
•  May cross multiple process’ address spaces 
•  Remote method invocation 

–  method invocations between objects in different processes 
(processes may be on the same or different host). 

–  Remote Procedure Call (RPC): procedure call between 
functions on different processes in non-object-based system 

•  Remote objects 
–  objects that can receive remote invocations. 

•  Remote object reference 
–  an identifier that can be used globally throughout a distributed 

system to refer to a particular unique remote object. 

•  Remote interface 
–  Every remote object has a remote interface that specifies 

which of its methods can be invoked remotely. E.g., CORBA 
interface definition language (IDL). 
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A Remote Object and Its Remote Interface 
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Example Remote Object reference=(IP,port,objectnumber,signature,time)"
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Remote and Local Method Invocations 
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"But difficult (why?)"

Process" Object" Process"
Process"

Host A!

Host B!



Lecture 8-8!

Failure Modes of RMI/RPC 
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Invocation Semantics 

Fault tolerance measures	
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Java RMI,"
CORBA"
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Sun RPC"

Transparency=remote invocation has same behavior as "
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[Birrell and Nelson, inventors of RPC, 1984]"
Very difficult to implement in asynchronous network…"

(ok for idempotent operations)"

Idempotent=same result if applied repeatedly, w/o side effects"
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Proxy and Skeleton in Remote Method  
Invocation 
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Proxy and Skeleton in Remote Method  
Invocation 

object A	

 object B	

skeleton	


Request	

proxy for B	



Reply	



Communication	

Remote 	

 Remote reference	

Communication	


 module	

 module	

reference module	

  module	



for B’s class	


& dispatcher	



remote	

client	

  	

server	



Process P1 (“client”)" Process P2 (“server”)"



Lecture 8-12!

Proxy 

•  Is responsible for making RMI transparent to 
clients by behaving like a local object to the 
invoker. 

–  The proxy implements (Java term, not literally) the methods in 
the interface of the remote object that it represents. But,… 

•  Instead of executing an invocation, the proxy 
forwards it to a remote object. 

–  On invocation, a method of the proxy marshals the following 
into a request message: (i) a reference to the target object, (ii) 
its own method id and (iii) the argument values. Request 
message is sent to the target, then proxy awaits the reply 
message, un-marshals it and returns the results to the invoker. 

–  Invoked object unmarshals arguments from request message, 
and when done marshals return values into reply message.  
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Marshalling & Unmarshalling   
v A Windows client sends an RMI to a Unix/Mac server 

v won’t work because Windows is little endian while Unix/Mac is big-endian 

v External data representation: an agreed, platform-
independent, standard for the representation of data 
structures and primitive values. 
v CORBA Common Data Representation (CDR) 
v Allows a Windows client (little endian) to interact with a Unix server or 

Mac server (big endian). 

v Marshalling: the act of taking a collection of data items 
(platform dependent) and assembling them into the external 
data representation (platform independent). 

v  Unmarshalling: the process of disassembling data that is in 
external data representation form, into a locally interpretable 
form. 



Lecture 8-14!

Remote Reference Module 

•  Is responsible for translating between local and remote 
object references and for creating remote object references. 

•  Has a remote object table 
–  An entry for each remote object held by any process. E.g., B at P2. 
–  An entry for each local proxy. E.g., proxy-B at P1. 

•  When a new remote object is seen by the remote reference 
module, it creates a remote object reference and adds it to 
the table. 

•  When a remote object reference arrives in a request or reply 
message, the remote reference module is asked for the 
corresponding local object reference, which may refer to 
either a proxy or to a local object. 

•  In case the remote object reference is not in the table, the 
RMI software creates a new proxy and asks the remote 
reference module to add it to the table. 
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Proxy and Skeleton in Remote Method  
Invocation 
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What about Server Side?  
   Dispatcher and Skeleton 

•  Each process has one dispatcher. And a skeleton 
for each local object (actually, for the class). 

•  The dispatcher receives all request messages 
from the communication module.  

–  For the request message, it uses the method id to select the 
appropriate method in the appropriate skeleton, passing on the 
request message. 

•  Skeleton “implements” the methods in the remote 
interface. 

–  A skeleton method un-marshals the arguments in the request 
message and invokes the corresponding method in the local 
object (the actual object). 

–  It waits for the invocation to complete and marshals the result, 
together with any exceptions, into a reply message. 
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Summary of Remote Method Invocation (RMI)  

Object A!
!
!

Object !
B!
!

Comm. 
Module!

Comm. 
Module!

Skeleton!
for B’s 
Class!

Server 
Process!

Client 
Process! Proxy!

Object!
B!
 ! Remote 

Reference 
Module!

Dispatcher!

Proxy object is a hollow 
container of Method 
names."
Remote Reference 
Module translates 
between local and 
remote object 
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Generation of Proxies, Dispatchers and  
Skeletons 

•  Programmer only writes object implementations 
and interfaces 

•  Proxies, Dispatchers and Skeletons generated 
automatically from the specified interfaces 

•  In CORBA, programmer specifies interfaces of 
remote objects in CORBA IDL; then, the interface 
compiler automatically generates code for 
proxies, dispatchers and skeletons. 

•  In Java RMI 
–  The programmer defines the set of methods offered by a 

remote object as a Java interface implemented in the remote 
object. 

–  The Java RMI compiler generates the proxy, dispatcher and 
skeleton classes from the class of the remote object. 
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Remote Procedure Call (RPC)  

v  Similar to RMIs, but for non-OO/non-object-based 
scenarios 

v  Procedure call that crosses process boundary 
v Client process calls for invocation of a procedure 

at the server process. 
q  Semantics are similar to RMIs – at least once, at most once, 

maybe 
q Format of the message is standard, uses request-reply  
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Client and Server Stub Procedures in RPC 
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Stubs   
v  Stubs are generated automatically from interface 

specifications. 
v  Stubs hide details of (un)marshalling from 

application programmer & library code developer. 
v  Client Stubs perform marshalling into request 

messages and unmarshalling from reply messages 

v  Server Stubs perform unmarshalling from request 
messages and marshalling into reply messages 

v  Stubs also take care of invocation  
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The Stub Generation Process  
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Announcements 

•  Next Friday Sep 28 – Tours of Blue Waters 
Datacenter! 

–  Signup sheet link will be posted soon on Piazza 

•  HW2 released soon. 
•  MP2 already released. 

•  Next week: P2P systems! 
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Optional Slides 
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Files Interface in Sun XDR 

const MAX = 1000;	


typedef int FileIdentifier;	


typedef int FilePointer;	


typedef int Length;	


struct Data {	



	

int length;	


	

char buffer[MAX];	



};	


struct writeargs {	



	

FileIdentifier f;	


	

FilePointer position;	


	

Data data;	



};	



struct readargs {	


	

FileIdentifier f;	


	

FilePointer position;	


	

Length length;	



};	


	


program FILEREADWRITE {	


   version VERSION {	



	

void WRITE(writeargs)=1; 	

1	


	

Data READ(readargs)=2; 	

2	



   }=2;	


} = 9999;	

 Program number"

Version number"

Only one argument allowed"
Can specify as struct"

Available with most Sun systems, and NFS"
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Finding RPCs  

Client!
Program !

Server!
procedure!

Server!
Stub!

Client !
Stub!

Comm. 
Module!

Comm. 
Module!

Dispatcher!

SERVER!

CLIENT!
Finding An RPC:"
RPCs live on specific hosts 
at specific ports."
Port mapper on the host 
maps from RPC name to 
port#"
When a server process is 
initialized, it registers its 
RPCs (handle) with the port 
mapper  on the server"
A client first connects to 
port mapper (daemon on 
standard port) to get this 
handle"
The call to RPC is then 
made by connecting to the 
corresponding port"
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Dealing Room System 
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Architecture for Distributed Event 
Notification 
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Binder and Activator 
•  Binder: A separate service that maintains a table containing 

mappings from textual names to remote object references. 
(sort of like DNS, but for the specific middleware) 

–  Used by servers to register their remote objects by name. Used by 
clients to look them up. E.g., Java RMI Registry, CORBA Naming Svc. 

•  Activation of remote objects 
–  A remote object is active when it is available for invocation within a 

running process. 
–  A passive object consists of (i) implementation of its methods; and (ii) 

its state in the marshalled form (a form in which it is shippable). 
–  Activation creates a new instance of the class of a passive object and 

initializes its instance variables. It is called on-demand. 
–  An activator is responsible for 

»  Registering passive objects at the binder 
»  Starting named server processes and activating remote objects in 

them. 
»  Keeping track of the locations of the servers for remote objects it 

has already activated 
–  E.g., Activator=Inetd, Passive Object/service=FTP (invoked on demand) 
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Etc. 

•  Persistent Object = an object that survives 
between simultaneous invocation of a process. 
E.g., Persistent Java, PerDIS, Khazana. 

•  If objects migrate, may not be a good idea to have 
remote object reference=(IP,port,…) 

–  Location service= maps a remote object reference to its likely 
current location  

–  Allows the object to migrate from host to host, without 
changing remote object reference 

–  Example: Akamai is a location service for web objects. It 
“migrates” web objects using the DNS location service 


