
Lecture 8-1!Lecture 8-1!

Computer Science 425
Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)
September 20, 2012

Lecture 8
RPCs and Distributed Objects

Reading: Section 4.3, parts of Chapter 5

© 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 8-2!

RMI/RPC - Motivation
•  You write a program where objects call each other
•  Works well if the program runs on one process
•  What if you split your objects across multiple

processes?
•  Can Object1’s still call Object2.MethodA()?
•  Why (not)?
•  Solution

–  RMIs: Remote Method Invocations (Object-based)
–  RPCs: Remote Procedure Calls (non-Object-based)

v  Access libraries of reusable code across hosts
v Pros

q  Supports code reuse
q  Standard interface, independent of applications and OS’s

Lecture 8-3!

Middleware Layers

Applications	

Middleware	

layers=
Provide
support to the
application

Run at all servers
@user level	

 Request reply protocol	

External data representation	

Operating System	

RPCs and RMIs, e.g., CORBA	

RPC = Remote Procedure Call (Procedure = Function)"
RMI=Remote Method Invocation"
CORBA=Common Object Request Brokerage Architecture"

Lecture 8-4!

Local Objects

•  Within one process’ address space
•  Object

–  consists of a set of data and a set of methods.
–  E.g., C++ object, Java object.

•  Object reference
–  an identifier via which objects can be accessed.
–  i.e., a pointer (e.g., virtual memory address within process)

•  Interface
–  provides a definition of the signatures of a set of methods (i.e.,

the types of their arguments, return values, and exceptions)
without specifying their implementation.

Lecture 8-5!

Remote Objects
•  May cross multiple process’ address spaces
•  Remote method invocation

–  method invocations between objects in different processes
(processes may be on the same or different host).

–  Remote Procedure Call (RPC): procedure call between
functions on different processes in non-object-based system

•  Remote objects
–  objects that can receive remote invocations.

•  Remote object reference
–  an identifier that can be used globally throughout a distributed

system to refer to a particular unique remote object.

•  Remote interface
–  Every remote object has a remote interface that specifies

which of its methods can be invoked remotely. E.g., CORBA
interface definition language (IDL).

Lecture 8-6!

A Remote Object and Its Remote Interface

interface	

remote	

m1	

m2	

m3	

m4	

m5	

m6	

Data	

implementation	

remote	

object	

{	

 of methods	

Example Remote Object reference=(IP,port,objectnumber,signature,time)"

Lecture 8-7!

Remote and Local Method Invocations

invocation	

 invocation	

remote	

invocation	

remote	

local	

local	

local	

invocation	

invocation	

A	

 B	

C	

D	

E	

F	

Local invocation=between objects on same process."
"Has exactly once semantics"

Remote invocation=between objects on different processes."
"Ideally also want exactly once semantics for remote invocations"
"But difficult (why?)"

Process" Object" Process"
Process"

Host A!

Host B!

Lecture 8-8!

Failure Modes of RMI/RPC

Execute!

Reply!

correct
function"

Execute,!
Crash!

Request!

Crash!

Request!

 !

Request!

Execute!

Reply!

Execute!

Reply!

crash
before
reply !

crash
before
execution!

lost
request"

Channel
fails
during
reply !

Client
machine
fails
before
receiving
reply !

(and if request is received more than once?)"

Lecture 8-9!

Invocation Semantics

Fault tolerance measures	

 Invocation 	

semantics	

Retransmit request 	

message	

Duplicate 	

filtering	

Re-execute procedure 	

or retransmit reply	

No	

Yes	

Yes	

Not applicable	

No	

Yes	

Not applicable	

Re-execute procedure	

Retransmit old reply	

 At-most-once	

At-least-once	

Maybe	

Whether or not to"
retransmit the request"
message until either"
a reply is received or"
the server is assumed"
to be failed"

when retransmissions"
are used, whether to"
filter out duplicate "
requests at the server."

whether to keep a"
history of result"
messages to enable"
lost results to be"
retransmitted without"
re-executing the "
operations"

Java RMI,"
CORBA"

CORBA"

Sun RPC"

Transparency=remote invocation has same behavior as "
" "local invocation"

[Birrell and Nelson, inventors of RPC, 1984]"
Very difficult to implement in asynchronous network…"

(ok for idempotent operations)"

Idempotent=same result if applied repeatedly, w/o side effects"

Lecture 8-10!

Proxy and Skeleton in Remote Method
Invocation

object A	

 object B	

skeleton	

Request	

proxy for B	

Reply	

Communication	

Remote 	

 Remote reference	

Communication	

 module	

 module	

reference module	

 module	

for B’s class	

& dispatcher	

remote	

client	

 	

server	

Process P1" Process P2"

MIDDLEWARE"

Lecture 8-11!

Proxy and Skeleton in Remote Method
Invocation

object A	

 object B	

skeleton	

Request	

proxy for B	

Reply	

Communication	

Remote 	

 Remote reference	

Communication	

 module	

 module	

reference module	

 module	

for B’s class	

& dispatcher	

remote	

client	

 	

server	

Process P1 (“client”)" Process P2 (“server”)"

Lecture 8-12!

Proxy

•  Is responsible for making RMI transparent to
clients by behaving like a local object to the
invoker.

–  The proxy implements (Java term, not literally) the methods in
the interface of the remote object that it represents. But,…

•  Instead of executing an invocation, the proxy
forwards it to a remote object.

–  On invocation, a method of the proxy marshals the following
into a request message: (i) a reference to the target object, (ii)
its own method id and (iii) the argument values. Request
message is sent to the target, then proxy awaits the reply
message, un-marshals it and returns the results to the invoker.

–  Invoked object unmarshals arguments from request message,
and when done marshals return values into reply message.

Lecture 8-13!

Marshalling & Unmarshalling
v A Windows client sends an RMI to a Unix/Mac server

v won’t work because Windows is little endian while Unix/Mac is big-endian

v External data representation: an agreed, platform-
independent, standard for the representation of data
structures and primitive values.
v CORBA Common Data Representation (CDR)
v Allows a Windows client (little endian) to interact with a Unix server or

Mac server (big endian).

v Marshalling: the act of taking a collection of data items
(platform dependent) and assembling them into the external
data representation (platform independent).

v  Unmarshalling: the process of disassembling data that is in
external data representation form, into a locally interpretable
form.

Lecture 8-14!

Remote Reference Module

•  Is responsible for translating between local and remote
object references and for creating remote object references.

•  Has a remote object table
–  An entry for each remote object held by any process. E.g., B at P2.
–  An entry for each local proxy. E.g., proxy-B at P1.

•  When a new remote object is seen by the remote reference
module, it creates a remote object reference and adds it to
the table.

•  When a remote object reference arrives in a request or reply
message, the remote reference module is asked for the
corresponding local object reference, which may refer to
either a proxy or to a local object.

•  In case the remote object reference is not in the table, the
RMI software creates a new proxy and asks the remote
reference module to add it to the table.

Lecture 8-15!

Proxy and Skeleton in Remote Method
Invocation

object A	

 object B	

skeleton	

Request	

proxy for B	

Reply	

Communication	

Remote 	

 Remote reference	

Communication	

 module	

 module	

reference module	

 module	

for B’s class	

& dispatcher	

remote	

client	

 	

server	

Process P1 (“client”)" Process P2 (“server”)"

Lecture 8-16!

What about Server Side?
 Dispatcher and Skeleton

•  Each process has one dispatcher. And a skeleton
for each local object (actually, for the class).

•  The dispatcher receives all request messages
from the communication module.

–  For the request message, it uses the method id to select the
appropriate method in the appropriate skeleton, passing on the
request message.

•  Skeleton “implements” the methods in the remote
interface.

–  A skeleton method un-marshals the arguments in the request
message and invokes the corresponding method in the local
object (the actual object).

–  It waits for the invocation to complete and marshals the result,
together with any exceptions, into a reply message.

Lecture 8-17!

Summary of Remote Method Invocation (RMI)

Object A!
!
!

Object !
B!
!

Comm.
Module!

Comm.
Module!

Skeleton!
for B’s
Class!

Server
Process!

Client
Process! Proxy!

Object!
B!
 ! Remote

Reference
Module!

Dispatcher!

Proxy object is a hollow
container of Method
names."
Remote Reference
Module translates
between local and
remote object
references."

Dispatcher sends the
request to Skeleton
Object"
Skeleton unmarshals
parameters, sends it
to the object, &
marshals the results
for return"

Remote
Reference
Module!

MIDDLEWARE"

Lecture 8-18!

Generation of Proxies, Dispatchers and
Skeletons

•  Programmer only writes object implementations
and interfaces

•  Proxies, Dispatchers and Skeletons generated
automatically from the specified interfaces

•  In CORBA, programmer specifies interfaces of
remote objects in CORBA IDL; then, the interface
compiler automatically generates code for
proxies, dispatchers and skeletons.

•  In Java RMI
–  The programmer defines the set of methods offered by a

remote object as a Java interface implemented in the remote
object.

–  The Java RMI compiler generates the proxy, dispatcher and
skeleton classes from the class of the remote object.

Lecture 8-19!

Remote Procedure Call (RPC)

v  Similar to RMIs, but for non-OO/non-object-based
scenarios

v  Procedure call that crosses process boundary
v Client process calls for invocation of a procedure

at the server process.
q  Semantics are similar to RMIs – at least once, at most once,

maybe
q Format of the message is standard, uses request-reply

Lecture 8-20!

Client and Server Stub Procedures in RPC

client
procedure	

Request	

Reply	

Communication	

Communication	

 module	

 module	

 dispatcher	

service 	

client stub	

 	

server stub	

procedure	

 procedure	

client process 	

 server process 	

procedure	

Lecture 8-21!

Stubs
v  Stubs are generated automatically from interface

specifications.
v  Stubs hide details of (un)marshalling from

application programmer & library code developer.
v  Client Stubs perform marshalling into request

messages and unmarshalling from reply messages

v  Server Stubs perform unmarshalling from request
messages and marshalling into reply messages

v  Stubs also take care of invocation

Lecture 8-22!

The Stub Generation Process

Interface !
Specification!

Stub
Generator!

Server!
Stub!

Common!
Header!

Client !
Stub!

Client!
Source !

RPC!
LIBRARY!

Server!
Source !

Compiler / Linker!

RPC!
LIBRARY!

Client!
Program !

Server!
Program!

Compiler / Linker!

e.g., in SUN XDR" e.g., rpcgen!

gcc"

.o, .exe"

.o, .exe"

.c"

.c"

.c"

.c"

.h"

gcc"

Lecture 8-23!

Announcements

•  Next Friday Sep 28 – Tours of Blue Waters
Datacenter!

–  Signup sheet link will be posted soon on Piazza

•  HW2 released soon.
•  MP2 already released.

•  Next week: P2P systems!

Lecture 8-24!Lecture 8-24!

Optional Slides

Lecture 8-25!

Files Interface in Sun XDR

const MAX = 1000;	

typedef int FileIdentifier;	

typedef int FilePointer;	

typedef int Length;	

struct Data {	

	

int length;	

	

char buffer[MAX];	

};	

struct writeargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Data data;	

};	

struct readargs {	

	

FileIdentifier f;	

	

FilePointer position;	

	

Length length;	

};	

	

program FILEREADWRITE {	

 version VERSION {	

	

void WRITE(writeargs)=1; 	

1	

	

Data READ(readargs)=2; 	

2	

 }=2;	

} = 9999;	

 Program number"

Version number"

Only one argument allowed"
Can specify as struct"

Available with most Sun systems, and NFS"

Lecture 8-26!

Finding RPCs

Client!
Program !

Server!
procedure!

Server!
Stub!

Client !
Stub!

Comm.
Module!

Comm.
Module!

Dispatcher!

SERVER!

CLIENT!
Finding An RPC:"
RPCs live on specific hosts
at specific ports."
Port mapper on the host
maps from RPC name to
port#"
When a server process is
initialized, it registers its
RPCs (handle) with the port
mapper on the server"
A client first connects to
port mapper (daemon on
standard port) to get this
handle"
The call to RPC is then
made by connecting to the
corresponding port"

Lecture 8-27!

Dealing Room System
Dealer’s computer	

Information	

provider	

Dealer	

External	

source	

External	

source	

Information	

provider	

Dealer	

Dealer	

Dealer	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Notification	

Dealer’s computer	

Dealer’s computer	

Dealer’s computer	

Notification	

 Notification	

At each dealer:"
One object per "
stock type "
of interest"

[Publish-Subscribe System] !
! !e.g, stock market!

Lecture 8-28!

Architecture for Distributed Event
Notification

subscriber	

observer	

object of interest	

Event service	

object of interest	

object of interest	

 observer	

subscriber	

subscriber	

3.	

1.	

2.	

 notification	

notification	

notification	

notification	

Lecture 8-29!

Binder and Activator
•  Binder: A separate service that maintains a table containing

mappings from textual names to remote object references.
(sort of like DNS, but for the specific middleware)

–  Used by servers to register their remote objects by name. Used by
clients to look them up. E.g., Java RMI Registry, CORBA Naming Svc.

•  Activation of remote objects
–  A remote object is active when it is available for invocation within a

running process.
–  A passive object consists of (i) implementation of its methods; and (ii)

its state in the marshalled form (a form in which it is shippable).
–  Activation creates a new instance of the class of a passive object and

initializes its instance variables. It is called on-demand.
–  An activator is responsible for

»  Registering passive objects at the binder
»  Starting named server processes and activating remote objects in

them.
»  Keeping track of the locations of the servers for remote objects it

has already activated
–  E.g., Activator=Inetd, Passive Object/service=FTP (invoked on demand)

Lecture 8-30!

Etc.

•  Persistent Object = an object that survives
between simultaneous invocation of a process.
E.g., Persistent Java, PerDIS, Khazana.

•  If objects migrate, may not be a good idea to have
remote object reference=(IP,port,…)

–  Location service= maps a remote object reference to its likely
current location

–  Allows the object to migrate from host to host, without
changing remote object reference

–  Example: Akamai is a location service for web objects. It
“migrates” web objects using the DNS location service

