
Lecture 6-1!

Computer Science 425
Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)
September 13, 2012

Lecture 6
Global Snapshots

!
Reading: Sections 14.5!

© 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou!

Lecture 6-2!

[United Nations photo by Paul Skipworth for Eastman Kodak Company ©1995]!

Example of a Global Snapshot

Lecture 6-3!

The distributed version is challenging
and important

•  More often each country’s premier were sitting in
their respective capital, and sending messages to
each other.

•  That’s the challenge of distributed global
snapshots!

•  In a cloud: multiple servers (for a service/
application) handling multiple concurrent events
and interacting with each other

•  The ability to obtain a global photograph of the
system is important

Lecture 6-4!

Detecting Global Properties
p2p1

message
garbage object

objec t
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

ac tivate
passive passivec. Term ination

Lecture 6-5!

Algorithms to Find Global States

•  Why?
–  (Distributed) garbage collection [think Grid application]
–  (Distributed) deadlock detection, termination [think database

transactions]
–  Global states useful for detecting stable predicates : once true always

stays true (unless you do something about it)
»  e.g., once a deadlock, always stays a deadlock

•  What?
–  Global state=states of all processes + states of all communication

channels
–  Capture the instantaneous state of each process
–  And the instantaneous state of each communication channel, i.e.,

messages in transit on the channels

•  How?
–  We’ll see this lecture!

Lecture 6-6!

Obvious First Solution…

•  Synchronize clocks of all processes
•  Ask all processes to record their states at known

time t

•  Problems?
–  Time synchronization possible only approximately (but

distributed banking applications cannot take approximations)
–  Does not record the state of messages in the channels

•  Again: synchronization not required – causality is
enough!

Lecture 6-7!

Two Processes and Their Initial States

p1 p2c2

c1

account widget s

$1000 (none)

account widget s

$50 2000

Lecture 6-8!

Execution of the Processes

p!1! p!2!(empty)!<$1000, 0>! <$50, 2000>!

(empty)!

c!2!

c!1!

1. Global state S!0!

2. Global state S!1!

3. Global state S!2!

4. Global state S!3!

p!1! p!2!(Order 10, $100)!<$900, 0>! <$50, 2000>!

(empty)!

c!2!

c!1!

p!1! p!2!(Order 10, $100)!<$900, 0>! <$50, 1995>!

(five widgets)!

c!2!

c!1!

p!1! p!2!(Order 10, $100)!<$900, 5>! <$50, 1995>!

(empty)!

c!2!

c!1!

Send 5 freebie widgets!!

Lecture 6-9!

Process Histories and States
v  For a process Pi , where events ei

0, ei
1, …

occur:
 history(Pi) = hi = <ei

0, ei
1, … >

 prefix history(Pi
k) = hi

k = <ei
0, ei

1, …,ei
k >

 Si
k : Pi ’s state immediately after kth event

v  For a set of processes P1 , …,Pi , …. :
 global history: H = ∪i (hi)
 global state: S = ∪i (Si

ki)
 a cut C ⊆ H = h1

c1 ∪ h2
c2 ∪ … ∪ hn

cn

 the frontier of C = {ei
ci, i = 1,2, … n}

Lecture 6-10!

Consistent States

v A cut C is consistent if and only if
 ∀e ∈ C (if f → e then f ∈ C)

v  A global state S is consistent if and only if
it corresponds to a consistent cut

v A consistent cut == a global snapshot

P1!

P2!

P3!

e1
0! e1

1! e1
2! e1

3!

e2
0!

e2
1!

e2
2!

e3
0! e3

1! e3
2!

Inconsistent cut!
Consistent
cut! Lamport’s “happens-before”!

Lecture 6-11!

The “Snapshot” Algorithm
v  Problem: Record a set of process and

channel states such that the combination is
a global snapshot/consistent cut.

v System Model:
Ø There is a uni-directional communication channel

between each ordered process pair (Pj à Pi and Pi à Pj)
Ø Communication channels are FIFO-ordered
Ø No failure, all messages arrive intact, exactly once
Ø Any process may initiate the snapshot (by sending
“Marker” message)

Ø Snapshot does not interfere with normal execution
Ø Each process is able to record its state and the state of its

incoming channels (no central collection)

Lecture 6-12!

The “Snapshot” Algorithm (2)
1. Marker sending rule for initiator process P0

v  After P0 has recorded its own state
•  for each outgoing channel C, send a marker message

on C
2. Marker receiving rule for a process Pk

 on receipt of a marker over channel C
v  if Pk has not yet received a marker

-  record Pk’s own state
-  record the state of C as “empty”
-  for each outgoing channel C, send a marker on C
-  turn on recording of messages over other incoming

channels
-  else

-  record the state of C as all the messages received over C
since Pk saved its own state; stop recording state of C

Lecture 6-13!

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process pi 	

On pi’s receipt of a marker message over channel c:	

	

if (pi has not yet recorded its state) it	

	

records its process state now;	

	

records the state of c as the empty set;	

	

turns on recording of messages arriving over other incoming channels;	

	

else 	

	

 pi records the state of c as the set of messages it has received over c 	

	

since it saved its state.	

	

end if	

Marker sending rule for process pi	

After pi has recorded its state, for each outgoing channel c:	

	

 pi sends one marker message over c 	

	

(before it sends any other message over c).	

Lecture 6-14!

Snapshot Example

P1!

P2!

P3!

e1
0!

e2
0!

e2
1!

e3
0!

e1
1!

a!

b!

M!

S-e1
0!

M!

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31!

S-e2
0!

M!

M!

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32!

e1
2!

3- P1 receives Marker over C21, sets state(C21) = {a}!

S-e3
0!

M!

M!

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23!

e2
2!

5- P2 receives Marker over C32, sets state(C32) = {b}!

e3
1!

6- P3 receives Marker over C23, sets state(C23) = {}!

e1
3!

7- P1 receives Marker over C31, sets state(C31) = {}!

Lecture 6-15!

Provable Assertion: Chandy-Lamport algo.
 determines a consistent cut

•  Let ei and ej be events occurring at pi and pj, respectively
such that ei à ej

•  The snapshot algorithm ensures that
 if ej is in the cut then ei is also in the cut.

•  if ej à <pj records its state>, then it must be true that ei à
<pi records its state>.

•  By contradiction, suppose <pi records its state> à ei

•  Consider the path of app messages (through other
processes) that go from ei à ej

•  Due to FIFO ordering, markers on above path precede
regular app messages

•  Thus, since <pi records its state> à ei , it must be true
that pj received a marker before ej

•  Thus ej is not in the cut => contradiction

Lecture 6-16!

Global States useful for detecting Global
Predicates

v  A cut is consistent if and only if it does not violate causality

v A Run is a total ordering of events in H that is
consistent with each hi’s ordering

v  A Linearization is a run consistent with happens-
before (→) relation in H.

v  Linearizations pass through consistent global
states.

v  A global state Sk is reachable from global state Si,
if there is a linearization, L, that passes through Si
and then through Sk.

v  The distributed system evolves as a series of
transitions between global states S0 , S1 , ….

Lecture 6-17!

Global State Predicates
v  A global-state-predicate is a function from the set of

global states to {true, false} , e.g., deadlock,
termination

v  A global state S0 satisfies liveness property P iff:
liveness(P(S0)) ≡ ∃ L∈ linearizations from S0 L passes through a SL & P(SL)

 = true

v Ex: P(S) = the computation will terminate from S
v A global state S0 satisfies this safety property P if:

safety(P(S0)) ≡ ∀S reachable from S0, P(S) = false

v Ex: P(S) = S has a deadlock
v Global states useful for detecting stable global-state-

predicate: it is one that once it becomes true, it
remains true in subsequent global states, e.g., an
object O is orphaned, or deadlock
v A stable predicate may be a safety or liveness predicate

Lecture 6-18!

Quick Note – Liveness versus Safety

Can be confusing, but terms are very important:
•  Liveness=guarantee that something good will happen,

eventually
–  “Guarantee of termination” is a liveness property
–  Guarantee that “at least one of the atheletes in the 100m final will win

gold” is liveness
–  A criminal will eventually be jailed
–  Completeness in failure detectors

•  Safety=guarantee that something bad will never happen
–  Deadlock avoidance algorithms provide safety
–  A peace treaty between two nations provides safety
–  An innocent person will never be jailed
–  Accuracy in failure detectors

•  Can be difficult to satisfy both liveness and safety!

Lecture 6-19!

Summary, Announcements

•  This class: importance of global snapshots,
Chandy and Lamport algorithm, violation of
causality

•  Reading for next week: Sections 15.4, 4.3 (and
parts of Chapter 5)

•  MP1 due this Sunday at midnight
–  Demos next Tuesday (or Monday)
–  Watch Piazza for signup sheets for demos

•  By now you should have a working system, and
should have written most tests for it

Lecture 6-20!

Optional Slides

Lecture 6-21!

Side Issue: Causality Violation

P1!

P2!

P3!

1 2

3 4

5

0

0

0

1!

2!

Physical Time!

4!
6

Include(obj1)!

obj1.method()!

P2 has obj1!

•  Causality violation occurs when order of messages causes an
action based on information that another host has not yet received.!

•  In designing a DS, potential for causality violation is important!

Lecture 6-22!

Detecting Causality Violation

P1!

P2!

P3!

(1,0,0)!

(2,0,0)!

Physical Time!

(2,0,2)!

•  Potential causality violation can be detected by vector timestamps.!

•  If the vector timestamp of a message is less than the local vector
timestamp, on arrival, there is a potential causality violation.!

0,0,0!

0,0,0!

0,0,0!

1,0,0!

2,0,1!

2,2,2!2,1,2!

2,0,2!

2,0,0! Violation:
(1,0,0) < (2,1,2)!

