
Lecture 4-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

September 6, 2012

Lecture 4

Failure Detection
Reading: Section 15.1 and parts of 2.4.2

 2012, I. Gupta

Lecture 4-2

Next Week

• Next Tuesday: Jack Dorsey, co-founder of
Twitter and founder of Square (mobile
payments) is visiting our class 2-2.30pm!

• Townhall-style Q&A

• We are using Google Moderator to post
questions, and up/down-vote questions

• Please follow the Google Moderator link
from the website – vote and post your own
questions!

Lecture 4-3

Your new datacenter

• You’ve been put in charge of a datacenter (think
of the Prineville Facebook DC), and your manager
has told you, “Oh no! We don’t have any failures
in our datacenter!”

• Do you believe him/her?

• What would be your first responsibility?

• Build a failure detector

• What are some things that could go wrong if you
didn’t do this?

Lecture 4-4

Failures are the norm

… not the exception, in datacenters.

Say, the rate of failure of one machine
(OS/disk/motherboard/network, etc.) is once every
10 years (120 months) on average.

When you have 120 servers in the DC, the mean
time to failure (MTTF) of the next machine is 1
month.

When you have 12,000 servers in the DC, the MTTF
is about once every 7.2 hours!

Lecture 4-5

To build a failure detector

• You have a few options

1. Hire 1000 people, each to monitor one machine in the

datacenter and report to you when it fails.

2. Write a failure detector program (distributed) that automatically
detects failures and reports to your workstation.

Which is more preferable, and why?

Lecture 4-6

Two Different System Models

Whenever someone gives you a distributed computing

problem, the first question you want to ask is, “What is the

system model under which I need to solve the problem?”

 Synchronous Distributed System

 Each message is received within bounded time

 Each step in a process takes lb < time < ub

 (Each local clock’s drift has a known bound)

Examples: Multiprocessor systems

Asynchronous Distributed System
 No bounds on message transmission delays

 No bounds on process execution

 (The drift of a clock is arbitrary)

Examples: Internet, wireless networks, datacenters, most real

systems

Lecture 4-7

Failure Model

Process omission failure

 Crash-stop (fail-stop) – a process halts and does not

execute any further operations

 Crash-recovery – a process halts, but then recovers

(reboots) after a while

Special case of crash-stop model (use a new identifier

on recovery)

We will focus on Crash-stop failures

They are easy to detect in synchronous

systems

Not so easy in asynchronous systems

Lecture 4-8

What’s a failure detector?

pi pj

Lecture 4-9

What’s a failure detector?

pi pj X

Crash-stop failure

(pj is a failed process)

Lecture 4-10

What’s a failure detector?

pi pj X

needs to know about pj’s failure

(pi is a non-faulty process

or alive process)

There are two main flavors of Failure Detectors…

Crash-stop failure

(pj is a failed process)

Lecture 4-11

I. Ping-Ack Protocol

pi pj

needs to know about pj’s failure

- pj replies
- pi queries pj once every T time units

- if pj does not respond within another T time units of being sent the ping,

 pi detects pj as failed

ping

ack

Worst case Detection time = 2T

If pj fails, then within T time units, pi will send

it a ping message. pi will time out within

another T time units.
The waiting time ‘T’ can be parameterized.

Lecture 4-12

II. Heartbeating Protocol

pi pj

needs to know about pj’s failure

- pj maintains a sequence number

- pj sends pi a heartbeat with incremented

 seq. number after every T time units

-if pi has not received a new heartbeat for the

 past, say 3*T time units, since it received the last heartbeat,

 then pi detects pj as failed

heartbeat

If T >> round trip time of messages, then worst case detection time ~ 3*T (why?)

The ‘3’ can be changed to any positive number since it is a parameter

Lecture 4-13

In a Synchronous System

• The Ping-ack and Heartbeat failure
detectors are always correct

– If a process pj fails, then pi will detect its failure
as long as pi itself is alive

• Why?
– Ping-ack: set waiting time ‘T’ to be > round—trip time

upper bound

» pi->pj latency + pj processing + pj->pi latency + pi
processing time

– Heartbeat: set waiting time ‘3*T’ to be > round—trip time
upper bound

Lecture 4-14

Failure Detector Properties

• Completeness = every process failure is eventually
detected (no misses)

• Accuracy = every detected failure corresponds to a
crashed process (no mistakes)

• What is a protocol that is 100% complete?

• What is a protocol that is 100% accurate?

• Completeness and Accuracy
– Can both be guaranteed 100% in a synchronous distributed system

– Can never be guaranteed simultaneously in an asynchronous
distributed system

 Why?

Lecture 4-15

• Impossible because of arbitrary message delays,
message losses
– If a heartbeat/ack is dropped (or several are dropped) from pj,

then pj will be mistakenly detected as failed => inaccurate
detection

– How large would the T waiting period in ping-ack or 3*T
waiting period in heartbeating, need to be to obtain 100%
accuracy?

– In asynchronous systems, delay/losses on a network link are
impossible to distinguish from a faulty process

• Heartbeating – satisfies completeness but not
accuracy (why?)

• Ping-Ack – satisfies completeness but not
accuracy (why?)

Satisfying both Completeness and

Accuracy in Asynchronous

Systems

Lecture 4-16

Completeness or Accuracy?

(in asynchronous system)

• Most failure detector implementations are willing
to tolerate some inaccuracy, but require 100%
Completeness

• Plenty of distributed apps designed assuming
100% completeness, e.g., p2p systems
– “Err on the side of caution”.

– Processes not “stuck” waiting for other processes

• But it’s ok to mistakenly detect once in a while
since – the victim process need only rejoin as a
new process and catch up

• Both Hearbeating and Ping-ack provide
– Probabilistic accuracy: for a process detected as failed, with some

probability close to 1.0 (but not equal), it is true that it has actually
crashed.

Lecture 4-17

• That was for one process pj being detected and
one process pi detecting failures

• Let’s extend it to an entire distributed system

• Difference from original failure detection is
– We want failure detection of not merely one process (pj), but all

processes in system

Failure Detection in a Distributed System

Lecture 4-18

Centralized Heartbeating

pj, Heartbeat Seq. l++

pj

pi

Downside?

Lecture 4-19

Ring Heartbeating

pj, Heartbeat Seq. l++
pj

pi

No SPOF (single point of failure)

Downside?

Lecture 4-20

All-to-All Heartbeating

pj, Heartbeat Seq. l++

…

pj

pi

Advantage: Everyone is able to keep track of everyone

Downside?

Lecture 4-21

Efficiency of Failure Detector: Metrics

• Bandwidth: the number of messages sent in the
system during steady state (no failures)
– Small is good

• Detection Time
– Time between a process crash and its detection

– Small is good

• Scalability: How do bandwidth and detection
properties scale with N, the number of
processes?

• Accuracy
– Large is good (lower inaccuracy is good)

Lecture 4-22

Accuracy metrics

• False Detection Rate/False Positive Rate
(inaccuracy)
– Multiple possible metrics

– 1. Average number of failures detected per second, when there
are in fact no failures

– 2. Fraction of failure detections that are false

• Tradeoffs: If you increase the T waiting period in
ping-ack or 3*T waiting period in heartbeating
what happens to:
– Detection Time?

– False positive rate?

– Where would you set these waiting periods?

Lecture 4-23

Suspicion

• Augment failure detection with suspicion count

• Ex: In all-to-all heartbeating, suspicion count =
number of machines that have timed out waiting
for heartbeats from a particular machine M
– When suspicion count crosses a threshold, declare M failed

– Issues: Who maintains this count? If distributed, need to
circulate the count

• Lowers mistaken detections (e.g., message
dropped, Internet path bad), e.g., in Cassandra
key-value store

• Can also keep much longer-term failure counts,
and use this to blacklist and greylist machines,
e.g., in OpenCorral CDN

Lecture 4-24

Membership Protocols

• Maintain a list of other alive (non-faulty)
processes at each process in the system

• Failure detector is a component in membership
protocol
– Failure of pj detected -> delete pj from membership list

– New machine joins -> pj sends message to everyone -> add pj
to membership list

• Flavors
– Strongly consistent: all membership lists identical at all times

(hard, may not scale)

– Weakly consistent: membership lists not identical at all times

– Eventually consistent: membership lists always moving
towards becoming identical eventually (scales well)

Lecture 4-25

Other Types of Failures

• Let’s discuss the other types of failures

• Failure detectors exist for them too (but we won’t
discuss those)

Lecture 4-26

Processes and Channels

process p process q

Communicati on channel

send

Outgoing message buffer Incoming message buffer

receivem

Lecture 4-27

Communication omission

failures
 Send-omission: loss of messages between the sending

process and the outgoing message buffer (both inclusive)

What might cause this?

 Channel omission: loss of message in the

communication channel

What might cause this?

 Receive-omission: loss of messages between the

incoming message buffer and the receiving process (both

inclusive)

What might cause this?

Other Failure Types

Lecture 4-28

Arbitrary failures
Arbitrary process failure: arbitrarily omits intended

processing steps or takes unintended processing
steps.

Arbitrary channel failures: messages may be
corrupted, duplicated, delivered out of order, incur
extremely large delays; or non-existent messages may
be delivered.

Above two are Byzantine failures, e.g., due to hackers,
man-in-the-middle attacks, viruses, worms, etc.

A variety of Byzantine fault-tolerant protocols have been
designed in literature!

Other Failure Types

Lecture 4-29

Omission and Arbitrary Failures

Class of failure Affects Description

Fail-stop

or Crash-stop

Process Process halts and remains halted. Other processes may
detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Lecture 4-30

Summary

• Failure Detectors

• Completeness and Accuracy

• Ping-ack and Heartbeating

• Suspicion, Membership

Lecture 4-31

Next Week

• Next Tuesday: Jack Dorsey, co-founder of
Twitter and founder of Square (mobile
payments) is visiting our class 2-2.30pm!

• Townhall-style Q&A

• We are using Google Moderator to post
questions, and up/down-vote questions

• Please follow the Google Moderator link
from the website – vote and post your own
questions!

Lecture 4-32

Next Week

• Reading for Next Two Lectures: Sections
14.1-14.5
– Time and Synchronization

– Global States and Snapshots

• HW1 already out, due Sep 20th

• MP1 already out, due 9/16: By now you
should
– Be in a group (send email to us TODAY, subject line: “425 MP group”), use Piazza

to find partners

– Have a basic design.

– If you’ve already started coding, you’re doing well.

