
Lecture 3-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

Sep 4, 2012

Lecture 3

Cloud Computing - 2

 2012, I. Gupta

Lecture 3-2

Recap

• Last Thursday’s Lecture

– Clouds vs. Clusters

» At least 3 differences

– A Cloudy History of Time

» Clouds are the latest in a long generation of distributed
systems

• Today’s Lecture

– Cloud Programming: MapReduce (the heart of Hadoop)

– Grids

Lecture 3-3

Programming Cloud Applications - New Parallel

Programming Paradigms: MapReduce

• Highly-Parallel Data-Processing

• Originally designed by Google (OSDI 2004 paper)

• Open-source version called Hadoop, by Yahoo!

– Hadoop written in Java. Your implementation could be in Java, or any
executable

• Google (MapReduce)
– Indexing: a chain of 24 MapReduce jobs

– ~200K jobs processing 50PB/month (in 2006)

• Yahoo! (Hadoop + Pig)
– WebMap: a chain of 100 MapReduce jobs

– 280 TB of data, 2500 nodes, 73 hours

• Annual Hadoop Summit: 2008 had 300 attendees, now close to 1000
attendees

Lecture 3-4

What is MapReduce?

• Terms are borrowed from Functional Language (e.g., Lisp)

Sum of squares:

• (map square ‘(1 2 3 4))
– Output: (1 4 9 16)

[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16))

– (+ 16 (+ 9 (+ 4 1)))

– Output: 30

[processes set of all records in groups]

• Let’s consider a sample application: Wordcount

– You are given a huge dataset (e.g., collection of webpages) and asked to
list the count for each word appearing in the dataset

Lecture 3-5

Map

• Process individual records to generate
intermediate key/value pairs.

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1
Input <filename, file text>

Key Value

Lecture 3-6

Map

• Parallelly Process individual records to
generate intermediate key/value pairs.

Welcome Everyone

Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1
Input <filename, file text>

MAP TASK 1

MAP TASK 2

Lecture 3-7

Map

• Parallelly Process a large number of
individual records to generate intermediate
key/value pairs.

Welcome Everyone

Hello Everyone

Why are you here

I am also here

They are also here

Yes, it’s THEM!

The same people we were thinking of

…….

Welcome 1

Everyone 1

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….

Input <filename, file text>

MAP TASKS

Lecture 3-8

Reduce

• Processes and merges all intermediate values
associated per key (that’s the group)

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

Key Value

Lecture 3-9

Reduce

• Parallelly Processes and merges all
intermediate values by partitioning keys

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

REDUCE TASK 1

REDUCE TASK 2

Lecture 3-10

Hadoop Code - Map

public static class MapClass extends MapReduceBase

 implements Mapper<LongWritable, Text, Text,

 IntWritable> {

 private final static IntWritable one =

 new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter)

 throws IOException {

 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);

 while (itr.hasMoreTokens()) {

 word.set(itr.nextToken());

 output.collect(word, one);

 }

 }

} // Source: http://developer.yahoo.com/hadoop/tutorial/module4.html#wordcount

http://developer.yahoo.com/hadoop/tutorial/module4.html

Lecture 3-11

Hadoop Code - Reduce

public static class ReduceClass extends MapReduceBase

 implements Reducer<Text, IntWritable, Text,

 IntWritable> {

 public void reduce(

 Text key,

 Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter)

 throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

}

Lecture 3-12

Hadoop Code - Driver

// Tells Hadoop how to run your Map-Reduce job

public void run (String inputPath, String outputPath)

 throws Exception {

 // The job. WordCount contains MapClass and Reduce.

 JobConf conf = new JobConf(WordCount.class);

 conf.setJobName(”mywordcount");

 // The keys are words

 (strings) conf.setOutputKeyClass(Text.class);

 // The values are counts (ints)

 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(MapClass.class);

 conf.setReducerClass(ReduceClass.class);

 FileInputFormat.addInputPath(

 conf, newPath(inputPath));

 FileOutputFormat.setOutputPath(

 conf, new Path(outputPath));

 JobClient.runJob(conf);

}

Lecture 3-13

Some Other Applications of

MapReduce

Distributed Grep:
– Input: large set of files
– Output: lines that match pattern

– Map – Emits a line if it matches the supplied pattern

– Reduce - Copies the intermediate data to output

Lecture 3-14

Some Other Applications of

MapReduce (2)

Reverse Web-Link Graph
– Input: Web graph: tuples (a, b) where (page a
 page b)

– Output: For each page, list of pages that link to
it

– Map – process web log and outputs <target, source>

– Reduce - emits <target, list(source)>

Lecture 3-15

Some Other Applications of

MapReduce (3)

Count of URL access frequency
– Input: Log of accessed URLs from proxy

server
– Output: For each URL, % of total accesses for

that URL

– Map – Process web log and outputs <URL, 1>

– Multiple Reducers - Emits <URL, URL_count>

(So far, like Wordcount. But still need %)

– Chain another MapReduce job after above one
– Map – Processes <URL, URL_count> and outputs

<1, (<URL, URL_count>)>

– 1 Reducer – Sums up URL_count’s to calculate
overall_count.

 Emits <URL, URL_count/overall_count>

Lecture 3-16

Some Other Applications of

MapReduce (4)

Map task’s output is sorted (e.g., quicksort)

Reduce task’s input is sorted (e.g.,
mergesort)

Sort
– Input: Series of (key, value) pairs
– Output: Sorted <value>s

– Map – <key, value> -> <value, _> (identity)

– Reducer – <key, value> -> <key, value> (identity)

– Partitioning function – partition keys across
reducers based on ranges

» Take data distribution into account to balance
reducer tasks

Lecture 3-17

Programming MapReduce

• Externally: For user
1. Write a Map program (short), write a Reduce program (short)

2. Decide number of tasks and submit job; wait for result

3. Need to know nothing about parallel/distributed
programming!

• Internally: For the cloud (and for us distributed
systems researchers)

1. Parallelize Map

2. Transfer data from Map to Reduce

3. Parallelize Reduce

4. Implement Storage for Map input, Map output, Reduce input,
and Reduce output

Lecture 3-18

Inside MapReduce

• For the cloud (and for us distributed systems researchers)
1. Parallelize Map: easy! Shard the data equally into requested map tasks.

2. Transfer data from Map to Reduce:

» All Map output tuples with same key assigned to same Reduce task

» use partitioning function: example is to hash the key of the tuple,
modulo number of reduce jobs, or identity function for sort

3. Parallelize Reduce: easy! Assign keys uniformly across requested reduce
tasks. Reduce task knows its assigned keys (through master).

4. Implement Storage for Map input, Map output, Reduce input, and Reduce
output

» Map input: from distributed file system

» Map output: to local disk (at Map node); uses local file system

» Reduce input: from (multiple) remote disks; uses local file systems

» Reduce output: to distributed file system

local file system = Linux FS, etc.

distributed file system = GFS (Google File System), HDFS (Hadoop
Distributed File System)

Lecture 3-19

Internal Workings of MapReduce -

Example

From the original MapReduce paper (OSDI 2004)

Lecture 3-20

Etcetera

• Failures
– Master tracks progress of each task

– reschedules task with stopped progress or on failed machine

– Highly simplified explanation here – failure-handling is more
sophisticated (next lecture!)

• Slow tasks
– The slowest machine slows the entire job down

– Hadoop Speculative Execution: Spawn multiple copies of tasks
that have a slow progress. When one finishes, stop other
copies.

• What about bottlenecks within the datacenter?
– CPUs? Disks? Switches?

Lecture 3-21

Grep

Workload: 1010 100-byte records to extract records

matching a rare pattern (92K matching records)

Testbed: 1800 servers each with 4GB RAM, dual 2GHz Xeon,

dual 169 GB IDE disk, 100 Gbps, Gigabit ethernet per machine

From the original MapReduce paper (OSDI 2004)

Lecture 3-22

1940

1950

1960

1970

1980

1990

2000

Timesharing Companies & Data Processing Industry

2010

Grids

Peer to peer

systems

Clusters

The first datacenters!

PCs

(not distributed!)

Clouds and datacenters

“A Cloudy History of Time” © IG 2010

Lecture 3-23

Clouds are data-intensive

Grids are/were computation-intensive

What is a Grid?

Lecture 3-24

Example: Rapid Atmospheric

Modeling System, ColoState U

• Hurricane Georges, 17 days in Sept 1998
– “RAMS modeled the mesoscale convective complex that

dropped so much rain, in good agreement with recorded data”

– Used 5 km spacing instead of the usual 10 km

– Ran on 256+ processors

• Computation-intensive application rather than
data-intensive

• Can one run such a program without access to a
supercomputer?

Lecture 3-25

Wisconsin

MIT
NCSA

Distributed
Computing
Resources

Lecture 3-26

Output of Job 2

Input to Job 3

An Application Coded by a Physicist

Job 0

Job 2

Job 1

Job 3

Output files of Job 0

Input to Job 2

Jobs 1 and 2 can be concurrent

Lecture 3-27

Job 2

Output files of Job 0

Input to Job 2

May take several hours/days

4 stages of a job

Init

Stage in

Execute

Stage out

Publish

Computation Intensive,

 so Massively Parallel

Several GBs

An Application Coded by a Physicist

Output of Job 2

Input to Job 3

Lecture 3-28

Wisconsin

MIT
NCSA

Job 0

Job 2 Job 1

Job 3

Lecture 3-29

Job 0

Job 2 Job 1

Job 3

Wisconsin

MIT

Condor Protocol

NCSA
Globus Protocol

Lecture 3-30

Job 0

Job 2

Job 1

Job 3
Wisconsin

MIT
NCSA

Globus Protocol

Internal structure of different

sites invisible to Globus

External Allocation & Scheduling

Stage in & Stage out of Files

Lecture 3-31

Job 0

Job 3
Wisconsin

Condor Protocol

Internal Allocation & Scheduling

Monitoring

Distribution and Publishing of Files

Lecture 3-32

The Grid Recently

Some are 40Gbps links!

(The TeraGrid links)

“A parallel Internet”

Lecture 3-33

• Cloud computing vs. Grid computing: what are
the differences?

Question to Ponder

Lecture 3-34

MP1, HW1

• MP1, HW1 out today
–MP1 due 9/16 (Sun midnight)

–HW1 due 9/20 (in class)

– For HW: Individual. You are allowed to discuss
the problem and concepts (e.g., in study
groups), but you cannot discuss the solution.

– For MP: Groups of 2 students (pair up with
someone taking class for same # credits)

» If you don’t have a partner, hang around
after class today

» Please report groups to us by this Thursday
9/16. Subject line: “425 MP group”

–Please read instructions carefully!

–Start NOW

Lecture 3-35

MP1: Logging + Testing

• Distributed Systems hard to debug (you’ll know
soon!)

• Creating log files at each machine to tabulate
important messages/errors/status is critical to
debugging

• MP1: Write a distributed program that lets you
grep (+ regexp’s) all the log files across a set of
machines (from any of those machines)

• How do you know your program works?
– Write unit tests

– E.g., Generate non-identical logs at each machine, then run
grep from one of them and automatically verify that you receive
the answer you expect

– Writing tests can be hard work, but it is industry standard

– We encourage (but don’t require) that you write tests for MP2
onwards

Lecture 3-36

Readings

• For next lecture
– Failure Detection

–Readings: Section 15.1, parts of Section 2.4.2

