
Lecture 27-1 Lecture 28-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

December 6, 2012

Lecture 28

Distributed File Systems and Distributed
Shared Memory

Chapter 12 (relevant parts), Sections 6.5, Chapter 6 from Tanenbaum
textbook

 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 28-2

File Attributes & System Modules

File Attribute
Record

Block Block Block

length

creation timestamp

read timestamp

write timestamp

attribute timestamp

reference count

file type

ownership

access control list

Directory
Module

File
Module

Access
control
Module

File
Access
Module

Block
Module

Device
Module

File System Modules

Lecture 28-3

UNIX File System Operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.

count = read(filedes, buffer, n)

count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other links to it, it is deleted from disk.

status = link(name1, name2) Creates a new link (name2) for a file (name1).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

Lecture 28-4

Distributed File System (DFS) Requirements

 Transparency - server-side changes should be invisible to
the client-side.

 Access transparency: A single set of operations is provided for
access to local/remote files.

 Location Transparency: All client processes see a uniform file
name space.

 Migration Transparency: When files are moved from one server
to another, users should not see it.

 Performance Transparency

 Scaling Transparency

 File Replication

 A file may be represented by several copies for read/write efficiency and
fault tolerance.

 Concurrent File Updates

Changes to a file by one client should not interfere with the operation of
other clients simultaneously accessing the same file.

Lecture 28-5

DFS Requirements (2)

Concurrent File Updates

One-copy update semantics: the file contents seen by all of the
clients accessing or updating a given file are those they would
see if only a single copy of the file existed.

Fault Tolerance
 At most once invocation semantics.

 At least once semantics. OK for a server protocol designed for
idempotent operations (i.e., duplicated requests do not result in invalid
updates to files)

 Security

 Access Control list = per object, list of allowed users and access
allowed to each

 Capability list = per user, list of objects allowed to access and
type of access allowed (could be different for each (user,obj))

 User Authentication: need to authenticate requesting clients so
that access control at the server is based on correct user
identifiers.

 Efficiency

 Whole file vs. block transfer

Lecture 28-6

Basic File Service Model

E.g., SUN NFS (Network File System) and AFS (Andrew File

System)

 An abstract model :

 Flat file service

implements create, delete, read, write, get attribute, set

attribute and access control operations.

 Directory service: is itself a client of (i.e., uses) flat file service.

 Creates and updates directories (hierarchical file structures)

and provides mappings between user names of files and the

unique file ids in the flat file structure.

 Client service/module: A client of directory and flat file services

Runs in each client’s computer, integrating and expanding

flat file and directory services to provide a unified API (e.g.,

the full set of UNIX file operations).

 Holds information about the locations of the flat file server

and directory server processes.

Lecture 28-7

File Service Architecture

Client computer Server computer

Application

program

Application

program

Client module

Flat file service

Directory service

Lecture 28-8

Flat File Service Operations

Read(FileId, i, n) -> Data
— throws BadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throws BadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.

Delete(FileId) Removes the file from the file store.

GetAttributes(FileId)->Attr Returns the file attributes for the file.

SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not
shaded in).

(1) Repeatable operation: No read-write pointer. Except for Create and delete, the
 operations are idempotent, allowing the use of at least once RPC semantics.
(2) Stateless servers: No file descriptors. Stateless servers can be restarted after a
 failure and resume operation without the need to restore any state.

In contrast, the UNIX file operations are neither idempotent nor consistent.

Lecture 28-9

Access Control

• In UNIX, the user’s access rights are checked
against the access mode requested in the open
call and the file is opened only if the user has the
necessary rights.

• In DFS, a user identity has to be passed with
requests – server first authenticates the user.
– An access check is made whenever a file name is converted to

a UFID (unique file id), and the results are encoded in the form
of a capability which is returned to the client for future access.

» Capability = per user, list of objects allowed to access and
type of access allowed (could be broken up per (user,obj))

Lecture 28-10

Directory Service Operations

Lookup(Dir, Name) -> FileId
— throws NotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, File)
— throws NameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throws NotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern)->NameSeq Returns all the text names in the directory that match the
regular expression Pattern. Like grep.

(1) Hierarchical file system: The client module provides a function that gets the UFID
of a file given its pathname. The function interprets the pathname starting from
the root, using Lookup to obtain the UFID of each directory in the path.

(2) Each server may hold several file groups, each of which is a collection of files
located on the server. A file group identifier consists of IP address + date, and allows
(i) file groups to migrate across servers, and (ii) clients to access file groups.

Lecture 28-11

Network File System (NFS)

 Application

Program

 Application

Program

Virtual File System

UNIX
File
System

Other
File
System

NFS
Client
System

Client Computer

Virtual File System

NFS
Server
System

UNIX
File
System

Server Computer

NFS
Protocol

UNIX
Kernel

(If you’re interested, more NFS slides are in the Backup Slides section of this slide deck)

Lecture 28-12

NFS Architecture -- VFS

• Virtual file system module
– Translates between NFS file identifiers and other file systems’s (e.g.,

UNIX) identifiers.

» The NFS file identifiers are called file handles.

» File handle = Filesystem/file group identifier + i-node number of
file + i-node generation number.

– Keeps track of filesystems (i.e., NFS file groups, different from a
 “file system”) that are available locally and remotely.

» The client obtains the first file handle for a remote filesystem
when it first mounts the filesystem. File handles are passed from
server to client in the results of lookup, create, and mkdir
operation.

– Distinguishes between local and remote files.

» VFS keeps one VFS structure for each mounted filesystem and
one v-node per open file.

• A VFS structure relates a remote filesystem to the local directory on which it is
mounted.

• A v-node contains an indicator to show whether a file is local or remote. If the file
is local, it contains a reference to the i-node; otherwise if the file is remote, it
contains the file handle of the remote file.

Lecture 28-13

Server Caching

• File pages, directories and file attributes that have
been read from the disk are retained in a main
memory buffer cache.

• Read-ahead anticipates read accesses and
fetches the pages following those that have most
recently been read.

• In delayed-write, when a page has been altered,
its new contents are written back to the disk only
when the buffered page is required for another
client.
– In comparison, Unix sync operation writes pages to disk every

30 seconds

• In write-through, data in write operations is stored
in the memory cache at the server immediately
and written to disk before a reply is sent to the
client.
– Better strategy to ensure data integrity even when server

crashes occur. More expensive.

Lecture 28-14

Client Caching

• A timestamp-based method is used to validate
cached blocks before they are used.

• Each data item in the cache is tagged with
– Tc: the time when the cache entry was last validated.

– Tm: the time when the block was last modified at the server.

– A cache entry at time T is valid if

(T-Tc < t) or (Tm client = Tm server).

– t=freshness interval

» Compromise between consistency and efficiency

» Sun Solaris: t is set adaptively between 3-30 seconds for
files, 30-60 seconds for directories

Lecture 28-15

Client Caching (Cont’d)

• When a cache entry is read, a validity check is
performed.
– If the first half of validity condition (previous slide) is true, the

the second half need not be evaluated.

– If the first half is not true, Tm server is obtained (via getattr() to
server) and compared against Tm client

• When a cached page (not the whole file) is
modified, it is marked as dirty and scheduled to
be flushed to the server.
– Modified pages are flushed when the file is closed or a sync

occurs at the client.

• Does not guarantee one-copy update semantics.

• More details in textbook

Lecture 28-16

Distributed Shared Memory

0 1 2 3 4 5 6 7 8 9

0 2 1 4

7 5

3 6

8 9
P1 P2 P3

Shared Address Space

0 1 2 3 4 5 6 7 8 9

0 2 1 4

7 5

3 6

8 9

Shared Address Space

9

Page Transfer

0 1 2 3 4 5 6 7 8 9

0 2 1 4

7 5

3 6

8 9

Shared Address Space

9

Read-only replicated page

Lecture 28-17

Shared Memory vs. Message Passing

• In a multiprocessor, two or more processors share a
common main memory. Any process on a processor can
read/write any word in the shared memory. All
communication through a bus.
– E.g., Cray supercomputer

– Called Shared Memory

• In a multicomputer, each processor has its own private
memory. All communication using a network.
– E.g., CSIL PC cluster

– Easier to build: One can take a large number of single-board
computers, each containing a processor, memory, and a network
interface, and connect them together. (called COTS=“Components off
the shelf”)

– Uses Message passing

• Message passing can be implemented over shared memory.

• Shared memory can be implemented over message passing.

• Let’s look at shared memory by itself.

CPU CPU CPU

Cache Cache Cache
Memory

Bus

Lecture 28-18

Cache Consistency – Write Through

Event Action taken by a cache in
response to its own
operation

Action taken by
other caches in
response (to a
remote operation)

Read hit Fetch data from local
cache

(no action)

Read miss Fetch data from memory
and store in cache

(no action)

Write miss Update data in memory
and store in cache

Invalidate cache
entry

Write hit Update memory and cache Invalidate cache
entry

All the other caches see the write (because they are snooping on the bus) and check to see if they
are also holding the word being modified. If so, they invalidate the cache entries.

Lecture 28-19

Cache Consistency – Write Once

A B C W1

W1

Clean

A B C W1

W1

Clean

A B C W1

W1

Invalid

A B C W1

W1

Invalid

CPU

W1

A reads word W and gets W1. B does not
respond but the memory does

Dirty

W2

A writes a value W2. B snoops on the bus,
and invalidates its entry. A’s copy is marked
as dirty.

Dirty

W3

A writes W again. This and subsequent
writes by A are done locally, without any
bus traffic.

Initially both the memory and B have
an updated entry of word W.

•For write, at most one CPU has valid access

Lecture 28-20

Cache Consistency – Write Once

A B C W1

W1

Invalid

A B C W1

W1

Invalid Dirty

W3

A writes a value W3. No bus traffic is
incurred

Invalid

W3 W4

C writes W. A sees the request by
snooping on the bus, asserts a signal that
inhibits memory from responding, provides the
values. A invalidates it own entry.
C now has the only valid copy.

Dirty

The cache consistency protocol is built upon the notion of snooping and
built into the memory management unit (MMU).
All above mechanisms are implemented in hardware for efficiency.

The above shared memory can be implemented using message
 passing instead of the bus.

Lecture 28-21

Granularity of Chunks

• When a processor references a word that is
absent, it causes a page fault.

• On a page fault,
– the missing page is just brought in from a remote

processor.

– A region of 2, 4, or 8 pages including the missing page
may also be brought in.

» Locality of reference: if a processor has referenced
one word on a page, it is likely to reference other
neighboring words in the near future.

• Region size
– Small => too many page transfers

– Large => False sharing

– Above tradeoff also applies to page size

Lecture 28-22

False Sharing

A

B

A

B

Processor 1 Processor 2

Code using A Code using B

Two
unrelated
shared
variables

Occurs because: Page size > locality of reference
Unrelated variables in a region cause large number of pages transfers
Large page sizes => more pairs of unrelated variables

Page consists of two variables A and B

Lecture 28-23

Achieving Sequential Consistency

• Achieving consistency is not an issue if
– Pages are not replicated, or…

– Only read-only pages are replicated.

• But don’t want to compromise performance.

• Two approaches are taken in DSM
– Update: the write is allowed to take place locally, but the

address of the modified word and its new value are broadcast
to all the other processors. Each processor holding the word
copies the new value, i.e., updates its local value.

– Invalidate: The address of the modified word is broadcast, but
the new value is not. Other processors invalidate their copies.
(Similar to example in first few slides for multiprocessor)

Page-based DSM systems typically use an invalidate protocol
instead of an update protocol. ? [Why?]

Lecture 28-24

Invalidation Protocol to Achieve Consistency

• Each page is either in R or W state.
– When a page is in W state, only one copy exists, located at one

processor (called current “owner”) in read-write mode.

– When a page is in R state, the current/latest owner has a copy
(mapped read-only), but other processors may have copies.

W

Processor 1 Processor 2

Owner

P

page

Processor 1 Processor 2

R

Owner

P

Suppose Processor 1 is attempting a read: Different scenarios

(a) (b)

Lecture 28-25

Invalidation Protocol (Read)

Processor 1 Processor 2

R

Owner

P R

Processor 1 Processor 2

R P R

Owner

Processor 1 Processor 2

P
R

Owner

Processor 1 Processor 2

P
W

Owner

In the first 4 cases, the page is mapped into its address space, and no trap occurs.

1. Ask for a copy
2. Mark page as R
3. Do read

1. Ask P2 to degrade its copy to R
2. Ask for a copy
3. Mark page as R
4. Do read

(c) (d)

(e)
(f)

Suppose Processor 1 is attempting a read: Different scenarios

Lecture 28-26

Invalidation Protocol (Write)

Processor 1 Processor 2

W

Owner

P

Processor 1 Processor 2

R P

Owner

1. Mark page as W
2. Do write

Processor 1 Processor 2

R

Owner

P R

Processor 1 Processor 2

R P R

Owner

1. Invalidate other copies
2. Mark local page as W
3. Do write

1. Invalidate other copies
2. Ask for ownership
3. Mark page as W
4. Do write

Suppose Processor 1 is attempting a write: Different scenarios

Lecture 28-27

Invalidation Protocol (Write)

Processor 1 Processor 2

P
R

Owner

Processor 1 Processor 2

P
W

Owner

1. Invalidate other copies
2. Ask for ownership
3. Ask for a page
4. Mark page as W
5. Do write

1. Invalidate other copies
2. Ask for ownership
3. Ask for a page
4. Mark page as W
5. Do write

Suppose Processor 1 is attempting a write: Different scenarios

Lecture 28-28

Finding the Owner

• Owner is the processor with latest updated copy. How do you locate it?

1. Do a broadcast, asking for the owner to respond.

– Broadcast interrupts each processor, forcing it to inspect the request
packet.

– An optimization is to include in the message whether the sender wants
to read/write and whether it needs a copy.

2. Designate a page manager to keep track of who owns which page.

– A page manager uses incoming requests not only to provide replies
but also to keep track of changes in ownership.

– Potential performance bottleneck  multiple page managers

» Map pages to page managers using the lower-order bits of page
number.

1. Request

2. Reply

Page
Manager

P

3. Request

4. Reply

Page
Manager

Owner

1. Request

3. Reply

2. Request forwarded

Owner P

Lecture 28-29

How does the Owner Find the Copies to

Invalidate
• Broadcast a msg giving the page num. and asking

processors holding the page to invalidate it.
– Works only if broadcast messages are reliable and can never

be lost. Also expensive.

• The owner (or page manager) for a page
maintains a copyset list giving processors
currently holding the page.
– When a page must be invalidated, the owner (or page manager)

sends a message to each processor holding the page and
waits for an acknowledgement.

Network

3 4

2
4

2 3 4

1
3
4

1 2 3

5 2
4

2 3 4 1

Copyset
Page num.

Lecture 28-30

Announcements

• MP4 due this Sunday. Demos next Monday (watch
Piazza/wiki for signup sheet)

• Mandatory to attend next Tuesday’s lecture (last
lecture)

• Final Exam, December 14 (Friday), 7.00 PM - 10.00
PM
– Roger Adams Laboratory – 116 (1RAL – 116)

– Do not come to our regular DCL classroom!

– Also on website schedule

– Allowed to bring a cheat sheet: two sides only, at least 1 pt font

• Conflict exam
– Please email Indy by this Friday (Dec 7) if you feel you might need

to take a conflict exam

– Conflict exam will likely be tougher than regular final exam

Lecture 28-31

Backup Slides (Not Covered)

Lecture 28-32

Network File System (NFS)

 Application

Program

 Application

Program

Virtual File System

UNIX
File
System

Other
File
System

NFS
Client
System

Client Computer

Virtual File System

NFS
Server
System

UNIX
File
System

Server Computer

NFS
Protocol

UNIX
Kernel

Lecture 28-33

Local and Remote File Systems Accessible

on an NFS client

j i m j a nej o ea nn

u se rss tud e nts

u s rv m u n ix

Cl ie n t Serv e r 2

. . . n fs

Rem o te

m ou n t
s taff

b i g b obj o n

p eo p l e

Serv e r 1

e xp o rt

(roo t)

Rem o te

m ou n t

. . .

x

(roo t) (roo t)

Note: The filesystem mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server 1;

the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

Hard mounting (retry f.s. request on failure) vs. Soft mounting (return error on f.s. access failure) – Unix is more compatible

 with hard mounting

Lecture 28-34

NFS Client and Server

• Client

– Plays the role of the client module from the basic/vanilla model.

– Integrated with the kernel, rather than being supplied as a library.

– Transfers blocks of files to and from server via RPC. Caches the
blocks in the local memory.

• Server

– Provides a conventional RPC interface at a well-known port on each
host.

– Plays the role of file and directory service modules in the architectural
model.

– Mounting of sub-trees of remote filesystems by clients is supported by
a separate mount service process on each NFS server.

Lecture 28-35

NFS Server Operations (simplified) – 1

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory

dirfh.

create(dirfh, name, attr) ->

newfh, attr
Creates a new file name in directory dirfh with attributes attr and

returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system

call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time
and modify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.

Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the

attributes of the file after the write has taken place.

rename(dirfh, name, todirfh, toname)
-> status

Changes the name of file name in directory dirfh to toname in

directory to todirfh .

link(newdirfh, newname, dirfh, name)
-> status

Creates an entry newname in the directory newdirfh which refers to

file name in the directory dirfh.

Continues on next slide ...

Lecture 28-36

NFS Server Operations (simplified) – 2

symlink(newdirfh, newname, string)
 -> status

Creates an entry newname in the directory newdirfh of type

symbolic link with the value string. The server does not interpret

the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file

identified by fh.

mkdir(dirfh, name, attr) ->

 newfh, attr

Creates a new directory name with attributes attr and returns the

new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.

Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->

 entries

Returns up to count bytes of directory entries from the directory

dirfh. Each entry contains a file name, a file handle, and an opaque

pointer to the next directory entry, called a cookie. The cookie is

used in subsequent readdir calls to start reading from the following

entry. If the value of cookie is 0, reads from the first entry in the

directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of

free blocks and so on) for the file system containing a file fh.

