Byzantine Fault Tolerance

CS 425: Distributed Systems
Fall 2012

Lecture 26
November 29, 2012

Presented By: Imranul Hoque

Reading List

e L. Lamport, R. Shostak, M. Pease, “The
Byzantine Generals Problem,” ACM ToPLaS
1982.

M. Castro and B. Liskov, “Practical Byzantine
Fault Tolerance,” OSDI 1999.

Problem

Computer systems provide crucial services

Computer systems fail
— Crash-stop failure

— Crash-recovery failure
— Byzantine failure

Example: natural disaster, malicious attack,
hardware failure, software bug, etc.

Need highly available service

Replicate to increase availability

Byzantine Generals Problem

1
4 3

’4} : 'l'.'\

;('

-

A l.l ;
- “‘3 Attack [She

%
- T‘n e '
> wr AT - _"‘\.\ ra/ " - X
Vi _/i&:*. . L (% I
oLt)

ih_ dh._ l'] 'I _I_}_\ y

Attack/Retreat

Retreat

Attack/Retreat

“ % Vil

* All loyal generals decide upon the same plan
* A small number of traitors can’t cause the loyal

generals to adopt a bad plan

Solvable if more than two-third of the generals are loyal

Practical Byzantine Fault Tolerance

Before PBFT: BFT was considered too impractical in
practice

Practical replication algorithm

— Weak assumption (BFT, asynchronous)
— Good performance

Implementation

— BFT: A generic replication toolkit

— BFS: A replicated file system
Performance evaluation

Byzantine Fault Tolerance in Asynchronous Environment

Challenges

Request A

Client

Request B

Client

Challenges

Client

Client

\ 1: Request A /

2: Request B
g

State Machine Replication

~N

Client

How to assign sequence number to requests?

7

b
- ™

=
|

1: Request A 1: Request A 1: Request A 1: Request A
2: Request B 2: Request B 2: Request B 2: Request B

Primary Backup Mechanism

Client

Clirent A

What if the primary is faulty?
Agreeing on sequence number
Agreeing on changing the primary (view change)

e g

1: Request A

2: Request B

B W

Agreement

Quorums have at least 2f + 1 replicas

Quorums intersect in at least one correct replica

e Certificate: set of messages from a quorum
* Algorithm steps are justified by certificates

10

Algorithm Components

Normal case operation
View changes

Garbage collection
State transfer
Recovery

All have to be desighed to work together

11

Normal Case Operation

* Three phase algorithm:
— PRE-PREPARE picks order of requests
— PREPARE ensures order within views
— COMMIT ensures order across views

* Replicas remember messages in log

 Messages are authenticated
—{.},, denotes a message sent by k

Quadratic message exchange

12

Pre-prepare Phase

Request: m

\ {PRE-PREPARE, v, n, m}_,

Primary: Replica 0

Replica 1

Replica 2

Replica 3 %

13

Request: m

Prepare Phase

PRE-PREPARE

\

Primary: Replica O

Replica 1

Replica 2

Replica 3

Accepted PRE-PREPARE

14

Request: m

Prepare Phase

PRE-PREPARE

\

Primary: Replica O

v

{PREPARE, v, n, D(m), 1},

-

Replica 1

Replica 2

Replica 3

Accepted PRE-PREPARE

15

Prepare Phase

Request: m Collect PRE-PREPARE + 2f matching PREPARE

: 2
\ PRE-PREPARE e
00
’ =/ /
Primary: Replica O / / ,,' I/
U Ui

{PREPARE, v, n, D(m), 1}, | &
=

Replica 1

Replica 2

Replica 3

Accepted PRE-PREPARE

16

Commit Phase

Request: m

PREPARE

\ PRE-PREPARE

Primary: Replica O

Replica 1

{COMMIT, v, n, D(m)},,

Replica 2

Replica 3

17

Commit Phase (2)

Request: m Collect 2f+1 matching COMMIT: execute and reply
\ PRE-PREPARE | !| PREPARE |! | COMMIT ,',':,?
l | "'Illl
Primary: Replica 0 : : § i
I I /
I I

Replica 1

-

N
/0 A’ \\ ;'"

Replica 2

Replica 3

18

View Change

* Provide liveness when primary fails
— Timeouts trigger view changes
— Select new primary (= view number mod 3f+1)

* Brief protocol

— Replicas send VIEW-CHANGE message along with the
requests they prepared so far

— New primary collects 2f+1 VIEW-CHANGE messages

— Constructs information about committed requests in
previous views

19

View Change Safety

* Goal: No two different committed request
with same sequence number across views

Quorum for Committed View Change
Certificate (m, v, n) Quorum

At least one correct replica has
Prepared Certificate (m, v, n)

20

Recovery

* Corrective measure for faulty replicas
— Proactive and frequent recovery

— All replicas can fail if at most f fail in a window

* System administrator performs recovery, or

* Automatic recovery from network attacks
— Secure CO-processor
— Read-only memory
— Watchdog timer

Clients will not get reply if more than f
replicas are recovering

21

Sketch of Recovery Protocol

Save state

Reboot with correct code and restore state
— Replica has correct code without losing state
Change keys for incoming messages

— Prevent attacker from impersonating others

Send recovery request r
— Others change incoming keys when r execute

Check state and fetch out-of-date or corrupt
items

— Replica has correct up-to-date state

22

Optimizations

* Replying with digest
* Request batching
* Optimistic execution

23

Performance

e Andrew benchmark
— Andrew100 and Andrew500

4 machines: 600 MHz, Pentium Il

* 3 Systems
— BFS: based on BFT
— NO-REP: BFS without replication
— NFS: NFS-V2 implementation in Linux

No experiment with faulty replicas
Scalability issue: only 4 & 7 replicas

24

elapsed time (seconds)

Benchmark Results

2000

eI

elapsed time (seconds)
[— [
N (a») N
o () ()
o O o
| | |

BFS NO-REP NFS-STD BFS NO-REP NFS-STD

Fig. 15. Andrew100 and Andrew500: elapsed time in seconds.

Without view change and faulty replica!

Related Works

Fault Tolerance

Fail Stop Fault Tolerance Byzantine Fault Tolerance
|l | B

Paxos Byzantine Byzantine
1989 (TR) Agreement Quorums

VS Replication

PODC 1988 Rampart Malkhi-Reiter HQ Replication

TPDS 1995 JDC 1998 OSDI ‘06

SecureRing Phalanx
HICSS 1998 SRDS 1998

Fleet
OSDI ‘99 ToKDI ‘00

Q/U
TOCS ‘03 SOSP ‘05

26

Questions?

