Computer Science 425
Distributed Systems
CS 425/ CSE 424 | ECE 428

MAMGATINE AD?

1 THINK WE SHOULD 2| (DOESHE UNDERSTAND)|3| (GRAT CoLOR poYou
BUILD AN 5GL 3 WHAT HE SAID OR £ WANT THAT DATABASET |
DATABASE . IS IT SOMETHING | el E
N A TRADE | |3
"E AW T 3| mAove wAS

e € 1988 United Fa

Indranll Gupta (Indy)
Nov 1, 2012
NoSQL/Key-value Stores

Lecture 20

Based mostly on
*Cassandra NoSOL presentation
*Cassandra 1.0 documentation at datastax.com

*Cassandra Apache project wiki
© 2012, I. GuptaHBase | Lecture 20-1 '

http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://www.datastax.com/docs/1.0/index
http://wiki.apache.org/cassandra/ArchitectureOverview
http://hbase.apache.org/book/

Cassandra|

« Originally designed at Facebook
« Open-sourced
« Some of its myriad users:

7\ Adobe Aprisl§ale

= Symantec.

ehY
PBS

NETELIX
ERICSSON Z

« With this many users, one would think

— Its design is very complex
— We in our class won’t know anything about its internals
— Let’s find out!

Lecture 2C

)-2

Why Key-value Store? |

 (Business) Key -> Value
e (twitter.com) tweet id -> information about tweet

« (kayak.com) Flight number -> information about
flight, e.g., availability

e (yourbank.com) Account number -> information
about it

 (amazon.com) item number -> information about
It

« Search is usually built on top of a key-value store

| Lecture 20-3 '

Isn’t that just a database? |

* Yes

* Relational
Databases
(RDBMSSs) have
been around for
ages

« MySQL is the
most popular
among them

« Data stored in
tables

e Schema-based,
|.e., structured
tables

* Queried using
SQL

blog relational database

jbellis

dhutch

egilmore

sports

fashian

tech

SQL queries: SELECT user_id from users WHERE
username = “jbellis”

Example’s Source

nalogy

| Lecture 20-4 '

http://www.datastax.com/docs/1.0/ddl/about-data-model
http://www.datastax.com/docs/1.0/ddl/about-data-model
http://www.datastax.com/docs/1.0/ddl/about-data-model

Issues with today’s workloads |

- Data: Large and unstructured

* Lots of random reads and writes
* Foreign keys rarely needed

* Need

— Incremental Scalability
— Speed

— No Single point of failure
— Low TCO and admin

— Scale out, not up

| Lecture 20-5 '

CAP Theorem

 Proposed by Eric Brewer (Berkeley)
« Subsequently proved by Gilbert and Lynch

* In adistributed system you can satisfy at most 2
out of the 3 guarantees
1. Consistency: all nodes have same data at any time
2. Availability: the system allows operations all the time

3. Partition-tolerance: the system continues to work in spite of
network partitions

« Cassandra
— Eventual (weak) consistency, Availability, Partition-tolerance

 Traditional RDBMSSs

— Strong consistency over availability under a partition

| Lecture 20-6 '

Cassandra Data Model |

Column Families:
— Like SQL tables

— but may be
unstructured
(client-specified)

— Can have index
tables

Hence “column-
oriented
databases”/
“NOSQL”

No schemas

Some columns
missing from some
entries

“Not Only SQL”

Supports get(key)
and put(key, value)
operations

Often write-heavy
workloads

blog keyspace

Liser

| Lecture 20-7 '

Let’s go Inside: Key -> Server Mapping |

« How do you decide which server(s) a key-value
resides on?

| Lecture 20-8 '

(Remember this?)

Say m=7/

0
N112 N16 \
Primary replica for
N96 key K13
Read/write K13 N32
NSO PN TINas N
\

Backup replicas for
key K13 ’

Cassandra uses a Ring-based DHT but without routing [Lecture 20-9 .

Writes |

* Need to be lock-free and fast (no reads or disk
seeks)

 Client sends write to one front-end node In
Cassandra cluster (Coordinator)

 Which (via Partitioning function) sends it to all
replica nodes responsible for key
— Always writable: Hinted Handoff

» If any replicais down, the coordinator writes to all other
replicas, and keeps the write until down replica comes
back up.

» When all replicas are down, the Coordinator (front end)
buffers writes (for up to an hour).

— Provides Atomicity for a given key (i.e., within ColumnFamily)

 Onering per datacenter
— Coordinator can also send write to one replica per remote

datacenter
| Lecture 20-10 '

Writes at a replica node |

On receiving a write
1. log it in disk commit log

2. Make changes to appropriate memtables
— In-memory representation of multiple key-value pairs

o ater, when memtable is full or old, flush to disk

— Data File: An SSTable (Sorted String Table) — list of key value
pairs, sorted by key

— Index file: An SSTable — (key, position in data sstable) pairs
» And a Bloom filter

Compaction: Data udpates accumulate over time
and sstables and logs need to be compacted
— Merge key updates, etc.

‘Reads need to touch log and multiple SSTables

— May be slower than writes
| Lecture 20-11 '

Bloom Filter |

Compact way of representing a set of items
Checking for existence in set is cheap

Some probability of false positives: an item not in
set may check true as being in set

Never false negatives

Large Bit Map

On insert, set all
hashed bits.

w N - O

On check-if-present,
return true if all hashed
bits set.

False positives

69 False positive rate low
k=4 hash functions
100 items
3200 bits
111 e FPrate =0.02%

127 | Lecture 20-12 '

Deletes and Reads |

* Delete: don’t delete item right away
— add atombstone to the log
— Compaction will remove tombstone and delete item

 Read: Similar to writes, except
— Coordinator can contact closest replica (e.g., in same rack)
— Coordinator also fetches from multiple replicas

» check consistency in the background, initiating a read-
repair if any two values are different

» Makes read slower than writes (but still fast)
» Read repair: uses gossip (remember this?)

| Lecture 20-13 '

Cassandra uses Quorums|

(Remember this?)

Reads
— Wait for R replicas (R specified by clients)

— In background check for consistency of remaining N-R
replicas, and initiate read repair if needed (N = total number of
replicas for this key)

Writes come in two flavors
— Block until quorum is reached
— Async: Write to any node

Quorum Q=N/2+1

R =read replica count, W = write replica count

If W+R > N and W > N/2, you have consistency
Allowed (W=1, R=N) or (W=N, R=1) or (W=Q, R=Q)

| Lecture 20-14 '

Cassandra uses Quorums|

 In reality, a client can choose one of these levels
for a read/write operation:
— ANY: any node (may not be replica)
— ONE: at least one replica
— QUORUM: quorum across all replicas in all datacenters
— LOCAL_QUORUM: in coordinator’s DC
— EACH_QUORUM: quorum in every DC
— ALL: all replicas all DCs

| Lecture 20-15 i

Cluster Membership |

(Remember this?)

1| 10118 | 64
2| 10110 | 64
1| 10120 | 66 3| 10090 | 58
2 | 10103 | 62 5 4| 10111 | 65
3| 10098 | 63

4| 10111 | 65 1 .
Address / Time (local) 1| 10120 | 70
Heartbeat Counter 2 | 10110 | 64
3| 10098 | 70
Protocol: ° 4| 1oi11 | 65

*Nodes periodically gossip e

. N Current time : 70 at node 2
their membership list Hrrentd

_ (asynchronous clocks)
*On receipt, the local

membership list is updated

Cassandra uses gossip-based cluster membership [Lecture 20-16 '

Fia and animation by: Dongyun Jin and Thuy Navuen

Cluster Membership, contd.|

(Remember this?)

e Suspicion mechanisms

« Accrual detector: FD outputs a value (PHI)
representing suspicion

« Apps set an appropriate threshold
« PHI =5 =>10-15 sec detection time

« PHI calculation for a member
— Inter-arrival times for gossip messages
— PHI(t) = - log(CDF or Probability(t_ now —t_last))/log 10

— PHI basically determines the detection timeout, but is sensitive
to actual inter-arrival time variations for gossiped heartbeats

Cassandra uses gossip-based cluster membership [Lecture 20-17 '

Fia and animation by: Dongyun Jin and Thuy Navuen

Vs. SQL|

MySQL is the most popular (and has been for a
while)

On > 50 GB data

MySQL
— Writes 300 ms avg
— Reads 350 ms avg

Cassandra
— Writes 0.12 ms avg
— Reads 15 ms avg

| Lecture 20-18 i

Cassandra Summary |

While RDBMS provide ACID (Atomicity
Consistency Isolation Durability)

Cassandra provides BASE

— Basically Available Soft-state Eventual Consistency
— Prefers Availability over consistency

Other NoSQL products
— MongoDB, Riak (look them up!)

Next: HBase

— Prefers (strong) Consistency over Availability

| Lecture 20-19 i

HBase |

 Google’s BigTable was first “blob-based” storage
system

« Yahoo! Open-sourced it -> HBase
 Major Apache project today
 Facebook uses HBase internally

 API
— Get/Put(row)
— Scan(row range, filter) —range queries
— MultiPut

| Lecture 20-20 '

HBase Architecture |

Small group of servers running
Zab, a Paxos-like protocol

HRegionServer

HRegion

A A
AEEEEEE EEEEEEE g,::ﬁt_

Client

S | OoOq OO0 O
S | DOODOod || DODoOd oodoo
© | O0Do00 || 0DDooo || DBo0oo

DataNode DataNode DataNode

Source: http://lwww.larsgeorge.com/2009/10/hbase-architecture-101-storage.html | Lecture 20-21 '

HBase Storage hierarchy |

« HBase Table

— Splitit into multiple regions: replicated across servers

» One Store per ColumnFamily (subset of columns with
similar query patterns) per region

* Memstore for each Store: in-memory updates to Store; flushed to disk
when full

— StoreFiles for each store for each region: where the data lives
- Blocks

« HFile
— SSTable from Google’s BigTable

| Lecture 20-22 '

Meta
(Optional)

Meta
(thional)

File Info Trailer

: Key | T
' lumn .
Key | Value | Row Cou Column|Column [Time | Key bl

Row | Family

i *g "' :Le '- ‘,ﬂ_@H I ,H,ﬂ, ,-,_, . :1,9\; ‘ \?‘] O i _K; Mﬂ\ @ »

. " Ethnicity
SSN:000-00-0000 [o B

| Lecture 20-23 '
Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

Strong Consistency: HBase Write-Ahead Log

| N\
: ((MemStore) Store
1 - — - — \ 2
: | DO @ | HRegion | @@ > LStoreFilj StoreFlleJ p—
| ——— , -~ ™/ - "
i | 1'5 - HFile |) _| HFile |
l 1]
I 1| -
i 3' .| (MemStore) Store
) HRegion | IO O > |(StoreFile
Client ! — i a -
:5::2te() = . ((MemStore) Store
KeyValue's Sl

: StoreFile StoreFiIeJ e
|
:
|
|
|
|
|
|
|
|
|
|

Write to HLog before writing to MemStore

Can recover from failure
| Lecture 20-24 '
Source: http:/www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html

Log Replay |

« After recovery from failure, or upon bootup
(HRegionServer/HMaster)

— Replay any stale logs (use timestamps to find out where the
database is w.r.t. the logs)

— Replay: add edits to the MemStore

 Why one HLog per HRegionServer rather than per
region?

— Avoids many concurrent writes, which on the local file system
may involve many disk seeks

| Lecture 20-25 '

Cross-data center replication |

Master Cluster
Synchronous Call
al=l=R=R=R=R=R=R=R=R=R= > Slave Cluster
HRegionServer
(\ Synchronous Call
HRegionServer | \EI oo00Oo0BoOoOEO0OE Slave Cluster
' .
s ~
HRegionServer Synchronous Call
. 0DO0OO0OO0OO0O0O0O

HLog

Zookeeper actually a file

system for control information

1. /hbase/replication/state

2. Ihbase/replication/peers
/<peer cluster number>

3. /hbase/replication/rs/<hlog>

hlog-
hlog-
hlog-
hlog-

/hbasefreplication/...
hlog-...-ts1 -= offset

Lots2
153
..-tsd4
..t85

Lecture 20-26 .

Summary |

« Key-value stores and NoSQL faster but provide
weaker guarantees

« MP3: By now, you must have a basic working
system (may not yet satisfy all the requirements)

« HW3: due next Tuesday

* Free Flu shot in Grainger Library today 3.30-6.30
pm —take your id card

| Lecture 20-27 '

