Computer Science 425 Distributed Systems CS 425 / CSE 424 / ECE 428

Indranil Gupta (Indy)
Nov 1, 2012
NoSQL/Key-value Stores
Lecture 20

Based mostly on

- Cassandra NoSQL presentation
- Cassandra 1.0 documentation at datastax.com
- Cassandra Apache project wiki

Cassandra

- Originally designed at Facebook
- **Open-sourced**
- Some of its myriad users:

Adobe^{*}

- With this many users, one would think
 - Its design is very complex

Sp^otify

- We in our class won't know anything about its internals
- Let's find out!

Why Key-value Store?

- (Business) Key -> Value
- (twitter.com) tweet id -> information about tweet
- (kayak.com) Flight number -> information about flight, e.g., availability
- (yourbank.com) Account number -> information about it
- (amazon.com) item number -> information about it
- Search is usually built on top of a key-value store

Isn't that just a database?

- Yes
- Relational
 Databases
 (RDBMSs) have been around for ages
- MySQL is the most popular among them
- Data stored in tables
- Schema-based, i.e., structured tables
- Queried using SQL

SQL queries: SELECT user_id from users WHERE username = "jbellis"

Issues with today's workloads

- Data: Large and unstructured
- Lots of random reads and writes
- Foreign keys rarely needed
- Need
 - Incremental Scalability
 - Speed
 - No Single point of failure
 - Low TCO and admin
 - Scale out, not up

CAP Theorem

- Proposed by Eric Brewer (Berkeley)
- Subsequently proved by Gilbert and Lynch
- In a distributed system you can satisfy at most 2 out of the 3 guarantees
 - 1. Consistency: all nodes have same data at any time
 - 2. Availability: the system allows operations all the time
 - 3. Partition-tolerance: the system continues to work in spite of network partitions
- Cassandra
 - Eventual (weak) consistency, Availability, Partition-tolerance
- Traditional RDBMSs
 - Strong consistency over availability under a partition

Cassandra Data Model

Column Families:

- Like SQL tables
- but may be unstructured (client-specified)
- Can have index tables
- Hence "columnoriented databases"/ "NoSQL"
 - No schemas
 - Some columns missing from some entries
 - "Not Only SQL"
 - Supports get(key) and put(key, value) operations
 - Often write-heavy workloads

Let's go Inside: Key -> Server Mapping

How do you decide which server(s) a key-value resides on?

(Remember this?)

Cassandra uses a Ring-based DHT but without routing

Writes

- Need to be lock-free and fast (no reads or disk seeks)
- Client sends write to one front-end node in Cassandra cluster (Coordinator)
- Which (via Partitioning function) sends it to all replica nodes responsible for key
 - Always writable: Hinted Handoff
 - » If any replica is down, the coordinator writes to all other replicas, and keeps the write until down replica comes back up.
 - » When all replicas are down, the Coordinator (front end) buffers writes (for up to an hour).
 - Provides <u>Atomicity</u> for a given key (i.e., within ColumnFamily)
- One ring per datacenter
 - Coordinator can also send write to one replica per remote datacenter

Writes at a replica node

On receiving a write

- log it in disk commit log
- •2. Make changes to appropriate memtables
 - In-memory representation of multiple key-value pairs
- Later, when memtable is full or old, flush to disk
 - Data File: An SSTable (Sorted String Table) list of key value pairs, sorted by key
 - Index file: An SSTable (key, position in data sstable) pairs
 - » And a Bloom filter
- Compaction: Data udpates accumulate over time and sstables and logs need to be compacted
 - Merge key updates, etc.
- Reads need to touch log and multiple SSTables
 - May be slower than writes

Bloom Filter

- Compact way of representing a set of items
- Checking for existence in set is cheap
- Some probability of false positives: an item not in set may check true as being in set
- Never false negatives

Deletes and Reads

- Delete: don't delete item right away
 - add a tombstone to the log
 - Compaction will remove tombstone and delete item
- Read: Similar to writes, except
 - Coordinator can contact closest replica (e.g., in same rack)
 - Coordinator also fetches from multiple replicas
 - » check consistency in the background, initiating a <u>read-repair</u> if any two values are different
 - » Makes read slower than writes (but still fast)
 - » Read repair: uses gossip (remember this?)

Cassandra uses Quorums

(Remember this?)

Reads

- Wait for R replicas (R specified by clients)
- In background check for consistency of remaining N-R replicas, and initiate read repair if needed (N = total number of replicas for this key)
- Writes come in two flavors
 - Block until quorum is reached
 - Async: Write to any node
- Quorum Q = N/2 + 1
- R = read replica count, W = write replica count
- If W+R > N and W > N/2, you have consistency
- Allowed (W=1, R=N) or (W=N, R=1) or (W=Q, R=Q)

Cassandra uses Quorums

- In reality, a client can choose one of these levels for a read/write operation:
 - ANY: any node (may not be replica)
 - ONE: at least one replica
 - QUORUM: quorum across all replicas in all datacenters
 - LOCAL_QUORUM: in coordinator's DC
 - EACH_QUORUM: quorum in every DC
 - ALL: all replicas all DCs

Cluster Membership

Cassandra uses gossip-based cluster membership

Cluster Membership, contd.

(Remember this?)

- Suspicion mechanisms
- Accrual detector: FD outputs a value (PHI) representing suspicion
- Apps set an appropriate threshold
- PHI = 5 => 10-15 sec detection time
- PHI calculation for a member
 - Inter-arrival times for gossip messages
 - PHI(t) = log(CDF or Probability(t_now t_last))/log 10
 - PHI basically determines the detection timeout, but is sensitive to actual inter-arrival time variations for gossiped heartbeats

Cassandra uses gossip-based cluster membership

Vs. SQL

- MySQL is the most popular (and has been for a while)
- On > 50 GB data
- MySQL
 - Writes 300 ms avg
 - Reads 350 ms avg
- Cassandra
 - Writes 0.12 ms avg
 - Reads 15 ms avg

Cassandra Summary

- While RDBMS provide ACID (Atomicity Consistency Isolation Durability)
- Cassandra provides BASE
 - Basically Available Soft-state Eventual Consistency
 - Prefers Availability over consistency
- Other NoSQL products
 - MongoDB, Riak (look them up!)
- Next: HBase
 - Prefers (strong) Consistency over Availability

HBase

- Google's BigTable was first "blob-based" storage system
- Yahoo! Open-sourced it -> HBase
- Major Apache project today
- Facebook uses HBase internally
- API
 - Get/Put(row)
 - Scan(row range, filter) range queries
 - MultiPut

HBase Architecture

HBase Storage hierarchy

- HBase Table
 - Split it into multiple <u>regions</u>: replicated across servers
 - » One <u>Store</u> per ColumnFamily (subset of columns with similar query patterns) per region
 - Memstore for each Store: in-memory updates to Store; flushed to disk when full
 - StoreFiles for each store for each region: where the data lives
 - Blocks

- HFile
 - SSTable from Google's BigTable

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

Strong Consistency: HBase Write-Ahead Log

Write to HLog <u>before</u> writing to MemStore Can recover from failure

Log Replay

- After recovery from failure, or upon bootup (HRegionServer/HMaster)
 - Replay any stale logs (use timestamps to find out where the database is w.r.t. the logs)
 - Replay: add edits to the MemStore
- Why one HLog per HRegionServer rather than per region?
 - Avoids many concurrent writes, which on the local file system may involve many disk seeks

Summary

- Key-value stores and NoSQL faster but provide weaker guarantees
- MP3: By now, you must have a basic working system (may not yet satisfy all the requirements)
- HW3: due next Tuesday
- Free Flu shot in Grainger Library today 3.30-6.30 pm – take your id card