
Lecture 20-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

Nov 1, 2012

NoSQL/Key-value Stores

Lecture 20

 2012, I. Gupta

Based mostly on
•Cassandra NoSQL presentation
•Cassandra 1.0 documentation at datastax.com
•Cassandra Apache project wiki
•HBase

http://www.slideshare.net/Eweaver/cassandra-presentation-at-nosql
http://www.datastax.com/docs/1.0/index
http://wiki.apache.org/cassandra/ArchitectureOverview
http://hbase.apache.org/book/

Lecture 20-2

Cassandra

• Originally designed at Facebook

• Open-sourced

• Some of its myriad users:

• With this many users, one would think
– Its design is very complex

– We in our class won’t know anything about its internals

– Let’s find out!

Lecture 20-3

Why Key-value Store?

• (Business) Key -> Value

• (twitter.com) tweet id -> information about tweet

• (kayak.com) Flight number -> information about
flight, e.g., availability

• (yourbank.com) Account number -> information
about it

• (amazon.com) item number -> information about
it

• Search is usually built on top of a key-value store

Lecture 20-4

Isn’t that just a database?

• Yes

• Relational
Databases
(RDBMSs) have
been around for
ages

• MySQL is the
most popular
among them

• Data stored in
tables

• Schema-based,
i.e., structured
tables

• Queried using
SQL

SQL queries: SELECT user_id from users WHERE
 username = “jbellis”

Example’s Source

http://www.datastax.com/docs/1.0/ddl/about-data-model
http://www.datastax.com/docs/1.0/ddl/about-data-model
http://www.datastax.com/docs/1.0/ddl/about-data-model

Lecture 20-5

Issues with today’s workloads

• Data: Large and unstructured

• Lots of random reads and writes

• Foreign keys rarely needed

• Need
– Incremental Scalability

– Speed

– No Single point of failure

– Low TCO and admin

– Scale out, not up

Lecture 20-6

CAP Theorem

• Proposed by Eric Brewer (Berkeley)

• Subsequently proved by Gilbert and Lynch

• In a distributed system you can satisfy at most 2
out of the 3 guarantees

1. Consistency: all nodes have same data at any time

2. Availability: the system allows operations all the time

3. Partition-tolerance: the system continues to work in spite of
network partitions

• Cassandra
– Eventual (weak) consistency, Availability, Partition-tolerance

• Traditional RDBMSs
– Strong consistency over availability under a partition

Lecture 20-7

Cassandra Data Model

• Column Families:

– Like SQL tables

– but may be
unstructured
(client-specified)

– Can have index
tables

• Hence “column-
oriented
databases”/
“NoSQL”

– No schemas

– Some columns
missing from some
entries

– “Not Only SQL”

– Supports get(key)
and put(key, value)
operations

– Often write-heavy
workloads

Lecture 20-8

Let’s go Inside: Key -> Server Mapping

• How do you decide which server(s) a key-value
resides on?

Lecture 20-9

9

N80

0
Say m=7

N32

N45

Backup replicas for
key K13

Cassandra uses a Ring-based DHT but without routing

N112

N96

N16

Read/write K13

Primary replica for
key K13

(Remember this?)

Coordinator (typically one per DC)

Lecture 20-10

Writes

• Need to be lock-free and fast (no reads or disk
seeks)

• Client sends write to one front-end node in
Cassandra cluster (Coordinator)

• Which (via Partitioning function) sends it to all
replica nodes responsible for key
– Always writable: Hinted Handoff

» If any replica is down, the coordinator writes to all other
replicas, and keeps the write until down replica comes
back up.

» When all replicas are down, the Coordinator (front end)
buffers writes (for up to an hour).

– Provides Atomicity for a given key (i.e., within ColumnFamily)

• One ring per datacenter
– Coordinator can also send write to one replica per remote

datacenter

Lecture 20-11

Writes at a replica node

On receiving a write

•1. log it in disk commit log

•2. Make changes to appropriate memtables
– In-memory representation of multiple key-value pairs

•Later, when memtable is full or old, flush to disk
– Data File: An SSTable (Sorted String Table) – list of key value

pairs, sorted by key

– Index file: An SSTable – (key, position in data sstable) pairs

» And a Bloom filter

•Compaction: Data udpates accumulate over time
and sstables and logs need to be compacted

– Merge key updates, etc.

•Reads need to touch log and multiple SSTables
– May be slower than writes

Lecture 20-12

Bloom Filter

• Compact way of representing a set of items

• Checking for existence in set is cheap

• Some probability of false positives: an item not in
set may check true as being in set

• Never false negatives

Large Bit Map

0

1

2

3

69

127

111

Key-K

Hash1

Hash2

Hashk

On insert, set all
hashed bits.

On check-if-present,
return true if all hashed
bits set.
• False positives

False positive rate low
• k=4 hash functions
• 100 items
• 3200 bits
• FP rate = 0.02%

.

.

Lecture 20-13

Deletes and Reads

• Delete: don’t delete item right away
– add a tombstone to the log

– Compaction will remove tombstone and delete item

• Read: Similar to writes, except
– Coordinator can contact closest replica (e.g., in same rack)

– Coordinator also fetches from multiple replicas

» check consistency in the background, initiating a read-
repair if any two values are different

» Makes read slower than writes (but still fast)

» Read repair: uses gossip (remember this?)

Lecture 20-14

Cassandra uses Quorums

• Reads
– Wait for R replicas (R specified by clients)

– In background check for consistency of remaining N-R
replicas, and initiate read repair if needed (N = total number of
replicas for this key)

• Writes come in two flavors
– Block until quorum is reached

– Async: Write to any node

• Quorum Q = N/2 + 1

• R = read replica count, W = write replica count

• If W+R > N and W > N/2, you have consistency

• Allowed (W=1, R=N) or (W=N, R=1) or (W=Q, R=Q)

(Remember this?)

Lecture 20-15

Cassandra uses Quorums

• In reality, a client can choose one of these levels
for a read/write operation:
– ANY: any node (may not be replica)

– ONE: at least one replica

– QUORUM: quorum across all replicas in all datacenters

– LOCAL_QUORUM: in coordinator’s DC

– EACH_QUORUM: quorum in every DC

– ALL: all replicas all DCs

Lecture 20-16

Cluster Membership

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4

3
Protocol:

•Nodes periodically gossip
their membership list

•On receipt, the local
membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

(Remember this?)

Cassandra uses gossip-based cluster membership

Lecture 20-17

Cluster Membership, contd.

• Suspicion mechanisms

• Accrual detector: FD outputs a value (PHI)
representing suspicion

• Apps set an appropriate threshold

• PHI = 5 => 10-15 sec detection time

• PHI calculation for a member
– Inter-arrival times for gossip messages

– PHI(t) = - log(CDF or Probability(t_now – t_last))/log 10

– PHI basically determines the detection timeout, but is sensitive
to actual inter-arrival time variations for gossiped heartbeats

Fig and animation by: Dongyun Jin and Thuy Ngyuen

(Remember this?)

Cassandra uses gossip-based cluster membership

Lecture 20-18

Vs. SQL

• MySQL is the most popular (and has been for a
while)

• On > 50 GB data

• MySQL
– Writes 300 ms avg

– Reads 350 ms avg

• Cassandra
– Writes 0.12 ms avg

– Reads 15 ms avg

Lecture 20-19

Cassandra Summary

• While RDBMS provide ACID (Atomicity
Consistency Isolation Durability)

• Cassandra provides BASE
– Basically Available Soft-state Eventual Consistency

– Prefers Availability over consistency

• Other NoSQL products
– MongoDB, Riak (look them up!)

• Next: HBase
– Prefers (strong) Consistency over Availability

Lecture 20-20

HBase

• Google’s BigTable was first “blob-based” storage
system

• Yahoo! Open-sourced it -> HBase

• Major Apache project today

• Facebook uses HBase internally

• API
– Get/Put(row)

– Scan(row range, filter) – range queries

– MultiPut

Lecture 20-21

HBase Architecture

Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

Small group of servers running
Zab, a Paxos-like protocol

HDFS

Lecture 20-22

HBase Storage hierarchy

• HBase Table
– Split it into multiple regions: replicated across servers

» One Store per ColumnFamily (subset of columns with
similar query patterns) per region

• Memstore for each Store: in-memory updates to Store; flushed to disk
when full

– StoreFiles for each store for each region: where the data lives

 - Blocks

• HFile
– SSTable from Google’s BigTable

Lecture 20-23

HFile

Source: http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

SSN:000-00-0000

(For a census table example)

Demographic
Ethnicity

Lecture 20-24

Strong Consistency: HBase Write-Ahead Log

Write to HLog before writing to MemStore
Can recover from failure

Source: http://www.larsgeorge.com/2010/01/hbase-architecture-101-write-ahead-log.html

Lecture 20-25

Log Replay

• After recovery from failure, or upon bootup
(HRegionServer/HMaster)
– Replay any stale logs (use timestamps to find out where the

database is w.r.t. the logs)

– Replay: add edits to the MemStore

• Why one HLog per HRegionServer rather than per
region?
– Avoids many concurrent writes, which on the local file system

may involve many disk seeks

Lecture 20-26

Cross-data center replication HLog

Zookeeper actually a file
system for control information
1. /hbase/replication/state
2. /hbase/replication/peers
 /<peer cluster number>
3. /hbase/replication/rs/<hlog>

Lecture 20-27

Summary

• Key-value stores and NoSQL faster but provide
weaker guarantees

• MP3: By now, you must have a basic working
system (may not yet satisfy all the requirements)

• HW3: due next Tuesday

• Free Flu shot in Grainger Library today 3.30-6.30
pm – take your id card

