
Lecture 19-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

October 30, 2012

Lecture 19

Gossiping
Reading: Section 18.4 (relevant parts)

 2012, I. Gupta.

Lecture 19-2

Passive (Primary-Backup) Replication

Request Communication: the request is issued to the
primary RM and carries a unique request id.

Coordination: Primary takes requests atomically, in order,
checks id (resends response if not new id.)

Execution: Primary executes & stores the response

Agreement: If update, primary sends updated state/result,
req-id and response to all backup RMs (1-phase commit
enough).

Response: primary sends result to the front end

Client Front End

RM

RM

RM

Client Front End RM

primary

Backup

Backup

Backup

….

?

Lecture 19-3

Active Replication

Request Communication: The request contains a unique identifier
and is multicast to all by a reliable totally-ordered multicast.

Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different
physical times!).

Execution: Each replica executes the request. (Correct replicas
return same result since they are running the same program, i.e.,
they are replicated protocols or replicated state machines)

Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

Response: Each replica sends response directly to FE

Client Front End RM

RM

Client Front End
RM

….

?

Lecture 19-4

Eager versus Lazy

• Eager replication, e.g., B-multicast, R-multicast, etc.
(previously in the course)
– Multicast request to all RMs immediately

• Alternative: Lazy replication
– “Don’t hurry; Be lazy.”

– Allow replicas to converge eventually and lazily

– Propagate updates and queries lazily, e.g., when network bandwidth
available

– Allow other RMs to be disconnected/unavailable

– May provide weaker consistency than sequential consistency, but
improves performance

• Lazy replication can be provided by using gossiping

Lecture 19-5

Multicast

Distributed

Group of

Processes

at Internet-

based hosts

Process with a piece of information

to be communicated to everyone

Lecture 19-6

Fault-tolerance and Scalability

Multicast sender

Multicast Protocol

 Process crashes

 Packets may

 be dropped

 Possibly

1000’s of processes

X

X

Lecture 19-7

Centralized (B-multicast)

UDP/TCP packets

 Simplest

 implementation

 Problems?

Lecture 19-8

R-multicast

UDP/TCP packets

 Reliability

(atomicity)

 Overhead is

quadratic in N

+ Every process B-multicasts the message

Lecture 19-9

Tree-Based

UDP/TCP packets

 Application-level:

SRM, RMTP, TRAM,TMTP

 Also network-level:

IP multicast

 Tree setup

 and maintenance

 Problems?

Lecture 19-10

A Third Approach

Multicast sender

Lecture 19-11

Gossip messages (UDP)

Periodically, transmit to

b random targets

Lecture 19-12

Other processes do same

after receiving multicast Gossip messages (UDP)

Lecture 19-13

Lecture 19-14

“Epidemic” Multicast (or “Gossip”)

 Protocol rounds (local clock)

 b random targets per round

 Non-infected

 Infected

Gossip Message (UDP)

Lecture 19-15

Properties

Claim that this simple protocol

• Is lightweight in large groups

• Spreads a multicast quickly

• Is highly fault-tolerant

Analysis

• For analysis purposes, assume loose
synchronization and # gossip targets (i.e., b) = 1

• In the first few rounds, gossip spreads like a tree
– Very few processes receive multiple gossip messages

• Later, if q(i) = fraction of non-infected processes
after round i, then q(i) is initially close to 1, and:

•
– Prob.(given process is non-infected after i+1) =

 Prob.(given process was non-infected after i) TIMES

 Prob. (not being picked as gossip target during round i+1)

– N(1-q(i)) gossips go out, each to a random process

– Probability of a given non-infected process not being picked by
any given gossip is (1-1/N)

Source: “Epidemic algorithms for replicated database management”, Demers et al
http://dl.acm.org/citation.cfm?id=41841&bnc=1

q(i+1) = q(i).(1-1/ N)N.(1-q(i))

Lecture 19-16

Gossip is fast and lightweight

(1) In first few rounds, takes O(log(N)) rounds to get to
about half the processes

– Think of a binary tree

• Later, if q(i) is the fraction of processes that have
not received the gossip after round i, then:

•

• For large N and q(i+1) close to 0, approximates to:

•

(2) In the end game, it takes O(log(N)) rounds for
q(i+1) to be whittled down to close to 0

(1)+(2) = O(log(N))

• Latency of gossip with high probability

• Average number of gossips each process sends out

 Source: “Epidemic algorithms for replicated database management”, Demers et al
http://dl.acm.org/citation.cfm?id=41841&bnc=1

q(i+1) = q(i).(1-1/ N)N.(1-q(i))

q(i+1) = q(i).e-1

Lecture 19-17

Lecture 19-18

Fault-tolerance

• Packet loss
– 50% packet loss: analyze with b replaced with b/2

– To achieve same reliability as 0% packet loss, takes twice as
many rounds

– Work it out!

• Process failure
– 50% of processes fail: analyze with N replaced with N/2 and b

replaced with b/2

– Same as above

– Work it out!

Lecture 19-19

Fault-tolerance

• With failures, is it possible that the epidemic might die out
quickly?

• Possible, but improbable:

– Once a few processes are infected, with high probability, the epidemic will
not die out

– So the analysis we saw in the previous slides is actually behavior with
high probability

• Think: why do rumors spread so fast? why do infectious
diseases cascade quickly into epidemics? why does a worm
like Blaster spread rapidly?

Lecture 19-20

So,…

• Is this all theory and a bunch of equations?

• Or are there implementations yet?

Lecture 19-21

Some implementations

• Amazon Web Services EC2/S3 (rumored)

• Clearinghouse project: email and database
transactions [PODC ‘87]

• refDBMS system [Usenix ‘94]

• Bimodal Multicast [ACM TOCS ‘99]

• Ad-hoc networks [Li Li et al, Infocom ‘02]

• Delay-Tolerant Networks [Y. Li et al ‘09]

• Usenet NNTP (Network News Transport Protocol)
! [‘79] – Newsgroup servers use gossip

Lecture 19-22

NNTP Inter-server Protocol

Server retains news posts for a while,

 transmits them lazily, deletes them after a while

1. Each client uploads and downloads news posts

 from a news server

2.

Lecture 19-23

Using Gossip for Failure Detection:

Gossip-style Heartbeating

All-to-all heartbeating
• Each process sends out
heartbeats to
every other process
• Con: Slow process/link
causes false positives

 Using gossip to
spread heartbeats
gives better accuracy

pi

Lecture 19-24

Gossip-Style Failure Detection

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4

3
Protocol:

•Processes periodically
gossip their membership list

•On receipt, the local
membership list is updated

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at process
2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Fig and animation by: Dongyun Jin and Thuy Ngyuen

Lecture 19-25

Gossip-Style Failure Detection

• If the heartbeat has not increased for more than
Tfail seconds (according to local time),
the member is considered failed

• But don’t delete it right away

• Wait another Tcleanup seconds, then delete the
member from the list

Lecture 19-26

Gossip-Style Failure Detection

• What if an entry pointing to a failed process is
deleted right after Tfail seconds?

• Fix: remember for another Tfail

• Ignore gossips for failed members
– Don’t include failed members in go- -ssip messages

1

1 10120 66

2 10103 62

3 10098 55

4 10111 65

2

4

3

1 10120 66

2 10110 64

3 10098 50

4 10111 65

1 10120 66

2 10110 64

4 10111 65

1 10120 66

2 10110 64

3 10098 75

4 10111 65

Current time : 75 at process
2

Lecture 19-27

Analysis/Discussion

• What happens if gossip period Tgossip is
decreased?

• A single heartbeat takes O(log(N)) time to
propagate. So: N heartbeats take:
–O(log(N)) time to propagate, if bandwidth

allowed per process is allowed to be O(N)

–O(N.log(N)) time to propagate, if bandwidth
allowed per process is only O(1)

• What happens to Pmistake (false positive rate)
as Tfail ,Tcleanup is increased?

• Tradeoff: False positive rate vs. detection
time vs Bandwidth

Lecture 19-28

• As # members increases, the detection time
increases

• As requirement is loosened, the detection
time decreases

• As # failed members increases, the
detection time increases slowly at first • The algorithm is resilient to message

loss

Simulations

Lecture 19-29

Gossip in Replication Management:

Query and Update Operations

Query Val

FE

RM RM

RM

Query, prev TS Val, new TS

Update

FE

Update, prev TS
Update id

Service

Clients

gossip

Lecture 19-30

Gossiping Architecture

• The RMs exchange “gossip” messages

 (1) periodically and (2) amongst each other. Gossip
messages convey updates they have each received from
clients, and serve to achieve anti-entropy (convergence of
all RMs).

• Guarantee:

– Each client obtains a consistent service over time: in response to a
query, an RM may have to wait until it receives “required” updates
from other RMs. The RM then provides client with data that at least
reflects the updates that the client has observed so far.

– Relaxed consistency among replicas: RMs may be inconsistent at any
given point of time. Yet all RMs eventually receive all updates and they
apply updates with ordering guarantees.

• Provides eventual consistency

Lecture 19-31

Summary

• Reading for this lecture: Section 18.4

• MP3: By now you must have a design and must
have started coding

• HW3 due Nov 6 (next Tuesday!)

Lecture 19-32

Optional Slides (Not Covered)

Lecture 19-33

Various Timestamps

• Virtual timestamps are used to control the order of
operation processing. The timestamp contains an entry for
each RM (i.e., it is a vector timestamp).

• Each front end keeps a vector timestamp, prev, that reflects
the latest data values accessed by that front end. The FE
sends this along with every request it sends to any RM.

• Replies to FE:

– When an RM returns a value as a result of a query operation, it
supplies a new timestamp, new.

– An update operation returns a timestamp, update id.

• Each returned timestamp is merged with the FE’s previous
timestamp to record the data that has been observed by the
client.
– Merging is a pairwise max operation applied to each element i (from 1 to N)

Lecture 19-34

Front ends Propagate Their Timestamps

FE

Clients

FE

Service

Vector

timestamps

RM RM

RM

gossip

Since client-to-client communication
can also lead to causal relationships
between operations applied to
services, the FE piggybacks its
timestamp on messages to other
clients.

Expanded on
next slide…

Lecture 19-35

A Gossip Replica Manager

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip

messages

FE

Replica
timestamp

Replica log

OperationID Update Prev

FE

Replica manager

Other replica managers

Timestamp table

Lecture 19-36

• Value: value of the object maintained by the RM.

• Value timestamp: the timestamp that represents the updates
reflected in the value. Updated whenever an update
operation is applied.

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Lecture 19-37

• Update log: records all update operations as soon as they are
received, until they are reflected in Value.
– Keeps all the updates that are not stable, where a stable update is one that has

been received by all other RMs and can be applied consistently with its ordering
guarantees.

– Keeps stable updates that have been applied, but cannot be purged yet, because
no confirmation has been received from all other RMs.

• Replica timestamp: represents updates that have been accepted
by the RM into the log.

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Lecture 19-38

• Executed operation table: contains the FE-supplied ids of
updates (stable ones) that have been applied to the value.
– Used to prevent an update being applied twice, as an update may

arrive from a FE and in gossip messages from other RMs.

• Timestamp table: contains, for each other RM, the latest
timestamp that has arrived in a gossip message from that
other RM.

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Lecture 19-39

• The ith element of a vector timestamp held by RMi
corresponds to the total number of updates received from
FEs by RMi

• The jth element of a vector timestamp held by RMi (j not
equal to i) equals the number of updates received by RMj
that have been forwarded to RMi in gossip messages.

Replica timestamp

Update log

Value timestamp

Value

Executed operation table

Stable

updates

Updates

Gossip
messages

FE

Replica
timestamp

Replica log

OperationID Update Prev
FE

Replica manager

Other replica managers

Timestamp table

Lecture 19-40

Update Operations

• Each update request u contains
– The update operation, u.op

– The FE’s timestamp, u.prev

– A unique id that the FE generates, u.id.

• Upon receipt of an update request, the RM i
– Checks if u has been processed by looking up u.id in the

executed operation table and in the update log.

– If not, increments the i-th element in the replica timestamp by 1
to keep track of the number of updates directly received from
FEs.

– Places a record for the update in the RM’s log.

 logRecord := <i, ts, u.op, u.prev, u.id>

 where ts is derived from u.prev by replacing u.prev’s ith
element by the ith element of its replica timestamp.

– Returns ts back to the FE, which merges it with its timestamp.

Lecture 19-41

Update Operation (Cont’d)

• The stability condition for an update u is

 u.prev <= valueTS

 i.e., All the updates on which this update depends
have already been applied to the value.

• When the update operation u becomes stable, the
RM does the following
– value := apply(value, u.op)

– valueTS := merge(valueTS, ts) (update the value timestamp)

– executed := executed U {u.id} (update the executed operation
table)

Lecture 19-42

Exchange of Gossiping Messages

• A gossip message m consists of the log of the
RM, m.log, and the replica timestamp, m.ts.
– Replica timestamp contains info about non-stable updates

• An RM that receives a gossip message m has
three tasks:
– (1) Merge the arriving log with its own.

» Let replicaTS denote the recipient RM’s replica timestamp.
A record r in m.log is added to the recipient’s log unless
r.ts <= replicaTS.

» replicaTS  merge(replicaTS, m.ts)

– (2) Apply any updates that have become stable but not been
executed (stable updates in the arrived log may cause some
pending updates to become stable)

– (3) Garbage collect: Eliminate records from the log and the
executed operation table when it is known that the updates
have been applied everywhere.

Lecture 19-43

Query Operations

• A query request q contains the operation, q.op, and the
timestamp, q.prev, sent by the FE.

• Let valueTS denote the RM’s value timestamp, then q can be
applied if

 q.prev <= valueTS

• The RM keeps q on a hold back queue until the condition is
fulfilled.
– If valueTs is (2,5,5) and q.prev is (2,4,6), then one update from RM3 is

missing.

• Once the query is applied, the RM returns

 new  valueTS

 to the FE (along with the value), and the FE merges new with
its timestamp.

Lecture 19-44

Selecting Gossip Partners

• The frequency with which RMs send gossip messages
depends on the application.

• Policy for choosing a partner to exchange gossip with:
– Random policies: choose a partner randomly (perhaps with weighted

probabilities)

– Deterministic policies: a RM can examine its timestamp table and
choose the RM that is the furthest behind in the updates it has
received.

– Topological policies: arrange the RMs into an overlay graph. Choose
graph edges based on small round-trip times (RTTs), or a ring or
Chord.

» Each has its own merits and drawbacks. The ring topology
produces relatively little communication but is subject to high
transmission latencies since gossip has to traverse several RMs.

• Example: Network News Transport Protocol (NNTP) uses
gossip communication. Your updates to class.cs425 are
spread among News servers using the gossip protocol!

• Gives probabilistically reliable and fast dissemination of
data with very low background bandwidth
– Analogous to the spread of gossip in society.

Lecture 19-45

More Examples

• Bayou
– Replicated database with weaker guarantees than sequential

consistency

– Uses gossip, timestamps and concept of anti-entropy

– Section 15.4.2

• Coda
– Provides high availability in spite of disconnected operation,

e.g., roving and transiently-disconnected laptops

– Based on AFS

– Aims to provide Constant data availability

– Section 15.4.3

