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Replication 

So far we’ve discussed 

Operations between 1 client and 1 server 

Operations between multiple clients and 1 server 

Concurrency Control  

Operations between multiple clients and multiple 
servers, with each object having one copy 

2 PC and Paxos 

Next: What if each object is replicated at 
multiple servers? 

Replication = Multiple copies of the same 
object/data 

Copies are called replicas 
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Why Replication  

 Enhances a service (object/data/service) 
 Increased Availability 
 Of service. When servers fail or when the network is 

partitioned, service still available at at least once server. 

 Fault Tolerance 
 Under the fail-stop model, if up to f of f+1 servers crash, at 

least one is alive.  

Load Balancing 
 One approach: Multiple server IPs can be assigned to the 

same name in DNS, which returns answers/IPs round-robin. 

 

 

 

 

  

P:  probability that one server fails= 1 – P= availability of 
service. e.g. P = 5% => service is available 95% of the time. 

Pn:  probability that n servers fail= 1 – Pn= availability of 
replicated service. e.g. P = 5%, n = 3 => service available 
99.875% of the time 
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Goals of Replication 

  

 

 

 

 

 

 Replication Transparency 
 User/client need not know that multiple physical copies of 

data exist. 

  Replication Consistency 
 Data is consistent on all of the replicas of an object (or is 

converging towards becoming consistent). 
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RM 
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Replica Manager 
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Replication Management – First Cut  

 Request Communication 

 Requests made from client are handled by FE. FE sends 
requests to either a single RM or to multiple RMs 

 Coordination: The RMs decide 

 whether the request is to be applied 

 the order of requests 

FIFO ordering: If a FE issues r then r’, then any correct 
RM handles r and then r’. 

Causal ordering: If the issue of r “happened before” 
the issue of r’, then any correct RM handles r and then 
r’. 

Total ordering: If a correct RM handles r and then r’, 
then any correct RM handles r and then r’. 

 Execution: The RMs execute the request (often 
they do this tentatively – why?).  
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Replication Management – First Cut  

  Agreement: The RMs attempt to reach 
consensus on the effect of the request.   
E.g., Two phase commit or Paxos (this is per-object!) 

If this succeeds, effect of request is made permanent 

  Response 

 One or more RMs responds to the FE. 

 The first response to arrive is good enough because all 

the RMs will return the same answer. 

Thus each RM is a replicated state machine 

“Multiple copies of the same State Machine begun in the 

Start state, and receiving the same Inputs in the same 

order will arrive at the same State having generated the 

same Outputs.” [Wikipedia, Schneider 90] 
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What the Client Sees - Linearizability  

Let the sequence of read and update operations that 

client i performs in some execution be oi1, oi2,…. 
“Program order” for the client 

A replicated shared object service is linearizable if for 

any execution (real), there is some interleaving of 

operations (virtual) issued by all clients that:  

 meets the specification of a single correct copy of objects 

 is consistent with the real times at which each operation 

occurred during the execution  

Main goal: any client will see (at any point of 

time) a copy of the object that is correct and 

consistent 
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Sequential Consistency  

 The real-time requirement of linearizability is hard, if not 

impossible, to achieve in real systems (Why?) 

  A less strict criterion is sequential consistency: A replicated 

shared object service is sequentially consistent if for any 
execution (real), there is some interleaving of clients’ 

operations (virtual) that:  

 meets the specification of a single correct copy of objects 

 is consistent with the program order in which each individual 

client executes those operations. 

This approach does not require absolute time or total order.  
Only a partial order so that each client’s ops in the sequence 
be consistent with that client’s program order (~ FIFO). 

Linearilizability implies sequential consistency. Not vice-
versa! 

Challenge with guaranteeing sequential consistency?  
 Ensuring that all replicas of an object are consistent. 
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Passive (Primary-Backup) Replication 

  

 

 

 

Request Communication: the request is issued to the 
primary RM and carries a unique request id. 

Coordination: Primary takes requests atomically, in order, 
checks id (resends response if not new id.) 

Execution: Primary executes & stores the response   

Agreement: If update, primary sends updated state/result, 
req-id and response to all backup RMs (1-phase commit 
enough). 

Response: primary sends result to the front end 

 

Client Front End 

RM 

RM 

RM 

Client Front End RM 

primary 

Backup 

Backup 

Backup 

…. 
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Fault Tolerance in Passive Replication   

The system implements linearizability, since the 

primary sequences operations in order. 

 If the primary fails, a backup becomes primary by 

leader election, and the replica managers that 

survive agree on which operations had been 

performed at the point when the new primary takes 

over. 

The above requirement can be met if the replica managers 

(primary and backups) are organized as a group and if the 

primary uses view-synchronous group communication to send 

updates to backups. 

 

 Thus the system remains linearizable in spite of 
crashes 

However, overhead of election 
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Active Replication 

  

 

 

 
 

Request Communication: The request contains a unique identifier 
and is multicast to all by a reliable totally-ordered multicast. 

Coordination: Group communication ensures that requests are 
delivered to each RM in the same order (but may be at different 
physical times!). 

Execution: Each replica executes the request.  (Correct replicas 
return same result since they are running the same program, i.e., 
they are replicated state machines) 

Agreement: No agreement phase is needed, because of multicast 
delivery semantics of requests 

Response: Each replica sends response directly to FE 

Client Front End RM 

RM 

Client Front End 
RM 

…. 
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Fault Tolerance in Active Replication   

 RMs work as replicated state machines, playing equivalent 

roles. That is, each responds to a given series of requests in 

the same way.  

If any RM crashes, state is maintained by other correct RMs. 

This system implements sequential consistency 

Use FIFO-total ordering in multicasts from FE to RM group 

Caveat (Out of band): If clients are multi-threaded and 

communicate with one another while waiting for responses 

from the service, we may need to incorporate causal-total 

ordering. 
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Transactions - One Copy Serializability 

• In a non-replicated system, transactions appear to 
be performed one at a time in some order. This is 
achieved by ensuring a serially equivalent 
interleaving of transaction operations. 

• One-copy serializability: The effect of transactions 
performed by clients on replicated objects should 
be the same as if they had been performed one at 
a time on a single set of objects (i.e., 1 replica per 
object).  
– Equivalent to combining serial equivalence + replication 

transparency/consistency 
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Replication + Concurrency Control: 

Primary Copy Replication 

• For now, assume no crashes/failures 

 

• All the client requests are directed to a single primary RM. 

• Concurrency control is applied at the primary.  

• To commit a transaction, the primary communicates with 
the backup RMs and replies to the client. 

• View synchronous comm. gives  one-copy serializability 

• Disadvantage? Performance is low since primary RM is 
bottleneck. 
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Read One/Write All Replication 

• An FE (front end) may communicate with any RM. 

• Every write operation must be performed at all of the RMs 

– Each contacted RM sets a write lock on the object.   

• A read operation can be performed at any single RM 

– A contacted RM sets a read lock on the object. 

• Consider pairs of conflicting operations of different 
transactions on the same object. 

– Any pair of write operations will require locks at all of the RMs  not 
allowed 

– A read operation and a write operation will require conflicting locks at 
some RM  not allowed 

One-copy serializability is achieved. 

Disadvantage? Failures block the system (esp. writes). 
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Network Partition 
Client + front end 
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Bad News Bears – CAP Theorem 

• In a distributed system we desire 
– Consistency: all copies of data should be alike at all times 

(e.g., one-copy serializability/sequential consistency) 
– Availability: at least one copy of data should be readable and 

writable at all times 
– Partition-tolerance: in spite of partitions in the system/network, 

the system continues to operate 

 
• Unfortunately, you cannot achieve all three 
• Can only choose at most 2 out of 3 

– Good way to read CAP theorem: under Partition, would you 
choose Consistency or Availability 

 
• Conjectured by Eric Brewer in 2000, proved by 

Gilbert and Lynch in 2002 
• Different systems take different ways around it 

– CP: Paxos; AP: Many key-value stores; CA: View Synchrony 
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Healing from Network Partitions 

• During a partition, pairs of conflicting 
transactions may have been allowed to execute in 
different partitions. The only choice is to take 
corrective action after the network has recovered  
– Assumption: Partitions heal eventually 

• Abort one of the transactions after the partition 
has healed 

• Basic idea: allow operations to continue in 
partitions, but finalize and commit trans. only 
after partitions have healed 

• But to optimize performance, better to avoid 
executing operations that will eventually lead to 
aborts…how? 
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Quorum Approaches 
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Quorum Approaches 

• Quorum approaches used to decide whether 
reads and writes are allowed 

• There are two types: pessimstic quorums and 
optimistic quorums 

• In the pessimistic quorum philosophy, updates 
are allowed only in a partition that has the 
majority of RMs 
– Updates are then propagated to the other RMs when the 

partition is repaired. 
– Any two majority sets intersect, thus consistency is ensured. 
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Static Quorums  

 The decision about how many RMs should be 
involved in an operation on replicated data is called 
Quorum selection  

 Quorum rules state that: 

 At least r replicas must be accessed for read 

 At least w replicas must be accessed for write 

 r + w > N, where N is the number of replicas 

 w > N/2 

 Each object has a version number or a consistent 
timestamp 

 Static Quorum predefines r and w , & is a 

 pessimistic approach: if partition occurs, update  
will be possible in at most one partition 
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Voting with Static Quorums  

 A version of quorum selection where each 
replica has a number of votes. Quorum is 
reached by majority of votes (N is the total 
number of votes) 

  e.g., a cache replica may be given a 0 vote 

 

 

 

 
  
- with r = w = 2,  Access time for write is 750 ms 

(parallel writes). Access time for read without cache 
is 750 ms. Access time for read with cache can be 
in the range 175ms to 850ms – why?. 

Cache    0 100ms  0ms  0% 

Rep1    1 750ms  75ms  1% 

Rep2    1 750ms  75ms  1% 

Rep3    1 750ms  75ms  1% 

Replica votes  access time   version chk       P(failure) 
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Group Communication: A bulding block 

  

 

 

 

 

 

 

  

“Member”= process (e.g., an RM) 

 Static Groups:  group membership is pre-defined 

 Dynamic Groups:  Members may join and leave, as 
necessary 
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Fail 

Join 

Group 



Lecture 18-24 

Views  
 A group membership service maintains group 

views, which are lists of current group members.  

This is NOT a list maintained by a one member, but… 

Each member maintains its own local view 

A view v p.i(g) is process p’s understanding of its 

group (list of members) in “view number” i: 
  Example: v p.0(g) = {p},  v p.1(g) = {p, q}, v p.2 (g) = {p, q, r}, v p.3 (g) = {p,r} 

Whenever a member joins or leaves or fails, a new 

group view is disseminated, throughout the group. 

Member detecting failure of another member reliable multicasts a 
“view change” message (requires at least causal-total ordering 

for multicasts) 

The goal: the order of views received at each member is the 
same (i.e., view deliveries are “virtually synchronous”) 
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Views  

An event is said to occur in a view vp,i(g) if the event occurs at 
p, and at the time of event occurrence, p has delivered vp,i(g) 
but has not yet delivered vp,i+1(g).  

Messages sent out in a view i need to be delivered in that view 
at all members in the group (“What happens in the View, stays 
in the View”) 

Requirements for view delivery 

 Order: If p delivers vi(g) and then vi+1(g), then no other process q 
delivers vi+1(g) before vi(g). 

 Integrity: If p delivers vi(g), then p is in all v *, i(g). 

 Non-triviality: if process q joins a group and becomes reachable 
from process p, then eventually, q will always be present in the 
views that delivered at p. 

Exception: partitioning of group. Solutions to partitioning: 
Primary partition: allow only majority partition to proceed 

Allow any and all partitions to proceed  

Choice depends on consistency requirements. 
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View Synchronous Communication 
View Synchronous Communication = Views +  Reliable 

multicast  

 The following guarantees are provided for multicast 

messages: 

Integrity: If p delivered message m, p will not deliver m again. 
Also p  group (m), i.e., p is in the latest view. 

Validity: Correct processes always deliver all messages. That is, 
if p delivers message m in view v(g), and some process q  v(g) 
does not deliver m in view v(g), then the next view v’(g) delivered 
at p will not include q. 

Agreement:  Correct processes deliver the same sequence of 
views, and the same set of messages in any view. 

 if p delivers m in V, and then delivers V’, then all processes in V 
 V’ deliver m in view V 

All View Delivery conditions (Order, Integrity and Non-triviality 
conditions, from last slide) are satisfied 

“What happens in the View, stays in the View” 

View and message deliveries are allowed to occur at different 
physical times at different members!  
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Example: View Synchronous Communication 
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Announcements 

• Please collect graded midterms, MPs and HWs 

 

• MP3: By now, you should have started and have 
an initial design. 
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State Transfer 

• When a new process joins the group, state 
transfer may be needed (at view delivery point) to 
bring it up to date 
– “state” may be list of all messages delivered so far (wasteful) 

– “state” could be list of current server object values (e.g., a 
bank database) – could be large 

– Important to optimize this state transfer 

• View Synchrony = “Virtual Synchrony” 

– Provides an abstraction of a synchronous network that hides 
the asynchrony of the underlying network from distributed 
applications  

– But does not violate FLP impossibility or CAP (since does not 
deal well with partition) 

• Used in ISIS toolkit (NY Stock Exchange) 
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Optimistic Quorum Approaches  

 An Optimistic Quorum selection allows writes to 

proceed in any partition.  

 This might lead to write-write conflicts. Such 
conflicts will be detected when the partition heals 
Any writes that violate one-copy serializability will then result in 

the transaction (that contained the write) to abort 

Still improves performance because partition repair not needed 
until commit time (and it’s likely the partition may have healed by 
then) 

 Optimistic Quorum is practical when: 

 Partitions are relatively short-lived 

 Conflicting updates are rare 

 Conflicts are always detectable 

 Damage from conflicts can be easily confined 

 Repair of damaged data is possible or an update can be 

discarded without consequences  
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View-based Quorum  

An optimistic approach 

Quorum is based on views at any time 

Uses view-synchronous group communication as a building 

block 

Once the partition is repaired, participants in the 
smaller partition know whom to contact for 
updates. 
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View-based Quorum - details  

Views are per object, numbered sequentially and 

only updated if necessary 

We define thresholds for each of read and write : 
 Aw: minimum nodes in a view for write, e.g.,  Aw > N/2 

 Ar: minimum nodes in a view for read 

 E.g.,  Aw + Ar > N 

If ordinary quorum cannot be reached for an operation, then 
we take a straw poll, i.e., we update views 

In a large enough partition for read, Viewsize  Ar      In a large 
enough partition for write, Viewsize  Aw 

The first update after partition repair forces restoration for 
nodes in the smaller partition 
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Example: View-based Quorum  

 Consider: N = 5, w = 5, r = 1, Aw = 3, Ar = 1 
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Example: View-based Quorum (cont’d)  
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Optional Slides (Not Covered) 
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Available Copies Approach 
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Transactions on Replicated Data 

B 

A 

Client + front end 

B B B A A 

getBalance(A) 

Client + front end 

Replica managers 
Replica managers 

deposit(B,3); 

U T 
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The Impact of RM Failure 

• Assume that (i) RM X fails just after T has 
performed getBalance; and (ii) RM N fails just 
after U has performed getBalance. Both failures 
occur before any of the deposit()’s. 

• Subsequently, T’s deposit will be performed at 
RMs M and P, and U’s deposit will be performed at 
RM Y.  

• The concurrency control on A at RM X does not 
prevent transaction U from updating A at RM Y. 

• Solution: Must also serialize RM crashes and 
recoveries with respect to entire transactions. 
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Local Validation (using Our Example) 

• From T’s perspective, 
– T has read from an object at X  X must have failed after T’s 

operation.  

– T observes the failure of N when it attempts to update the object B  
N’s failure must be before T. 

– Thus: N fails  T reads object A at X; T writes objects B at M and P  
T commits  X fails. 

• From U’s perspective, 
– Thus: X fails  U reads object B at N; U writes object A at Y  U 

commits  N fails. 

• At the time T tries to commit,  
– it first checks if N is still not available and if X, M and P are still 

available. Only then can T commit. 

– It then checks if the failure order is consistent with that of other 
transactions (T cannot commit if U has committed) 

– If T commits, U’s validation will fail because N has already failed. 

• Can be combined with 2PC.  

• Caveat: Local validation may not work if partitions occur in 
the network 
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Two Phase Commit Protocol For Transactions  

on Replicated Objects 

Two level nested 2PC 

• In the first phase, the coordinator sends the 
canCommit? command to the participants, each 
of which then passes it onto the other RMs 
involved (e.g., by using view synchronous 
communication) and collects their replies before 
replying to the coordinator. 

• In the second phase, the coordinator sends the 
doCommit or doAbort request, which is passed 
onto the members of the groups of RMs. 
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Available Copies Replication 

• A client’s read request on an object can be 
performed by any RM, but a client’s update 
request must be performed across all available 
(i.e., non-faulty) RMs in the group. 

• As long as the set of available RMs does not 
change, local concurrency control achieves one-
copy serializability in the same way as in read-
one/write-all replication.  

• May not be true if RMs fail and recover during 
conflicting transactions. 

 


