
Lecture 18-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

October 25, 2012

Lecture 18

Replication Control
Reading: Sections 18.1-18.3, 18.5

 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 18-2

Replication

So far we’ve discussed

Operations between 1 client and 1 server

Operations between multiple clients and 1 server

Concurrency Control

Operations between multiple clients and multiple
servers, with each object having one copy

2 PC and Paxos

Next: What if each object is replicated at
multiple servers?

Replication = Multiple copies of the same
object/data

Copies are called replicas

Lecture 18-3

Why Replication

 Enhances a service (object/data/service)
 Increased Availability
 Of service. When servers fail or when the network is

partitioned, service still available at at least once server.

 Fault Tolerance
 Under the fail-stop model, if up to f of f+1 servers crash, at

least one is alive.

Load Balancing
 One approach: Multiple server IPs can be assigned to the

same name in DNS, which returns answers/IPs round-robin.

P: probability that one server fails= 1 – P= availability of
service. e.g. P = 5% => service is available 95% of the time.

Pn: probability that n servers fail= 1 – Pn= availability of
replicated service. e.g. P = 5%, n = 3 => service available
99.875% of the time

Lecture 18-4

Goals of Replication

 Replication Transparency
 User/client need not know that multiple physical copies of

data exist.

 Replication Consistency
 Data is consistent on all of the replicas of an object (or is

converging towards becoming consistent).

Client Front End
(FE) RM

RM

RM
Client Front End

(FE)

Client Front End
(FE)

Service

server

server

server

Replica Manager

Lecture 18-5

Replication Management – First Cut

 Request Communication

 Requests made from client are handled by FE. FE sends
requests to either a single RM or to multiple RMs

 Coordination: The RMs decide

 whether the request is to be applied

 the order of requests

FIFO ordering: If a FE issues r then r’, then any correct
RM handles r and then r’.

Causal ordering: If the issue of r “happened before”
the issue of r’, then any correct RM handles r and then
r’.

Total ordering: If a correct RM handles r and then r’,
then any correct RM handles r and then r’.

 Execution: The RMs execute the request (often
they do this tentatively – why?).

Lecture 18-6

Replication Management – First Cut

 Agreement: The RMs attempt to reach
consensus on the effect of the request.
E.g., Two phase commit or Paxos (this is per-object!)

If this succeeds, effect of request is made permanent

 Response

 One or more RMs responds to the FE.

 The first response to arrive is good enough because all

the RMs will return the same answer.

Thus each RM is a replicated state machine

“Multiple copies of the same State Machine begun in the

Start state, and receiving the same Inputs in the same

order will arrive at the same State having generated the

same Outputs.” [Wikipedia, Schneider 90]

Lecture 18-7

What the Client Sees - Linearizability

Let the sequence of read and update operations that

client i performs in some execution be oi1, oi2,….
“Program order” for the client

A replicated shared object service is linearizable if for

any execution (real), there is some interleaving of

operations (virtual) issued by all clients that:

 meets the specification of a single correct copy of objects

 is consistent with the real times at which each operation

occurred during the execution

Main goal: any client will see (at any point of

time) a copy of the object that is correct and

consistent

Lecture 18-8

Sequential Consistency

 The real-time requirement of linearizability is hard, if not

impossible, to achieve in real systems (Why?)

 A less strict criterion is sequential consistency: A replicated

shared object service is sequentially consistent if for any
execution (real), there is some interleaving of clients’

operations (virtual) that:

 meets the specification of a single correct copy of objects

 is consistent with the program order in which each individual

client executes those operations.

This approach does not require absolute time or total order.
Only a partial order so that each client’s ops in the sequence
be consistent with that client’s program order (~ FIFO).

Linearilizability implies sequential consistency. Not vice-
versa!

Challenge with guaranteeing sequential consistency?
 Ensuring that all replicas of an object are consistent.

Lecture 18-9

Passive (Primary-Backup) Replication

Request Communication: the request is issued to the
primary RM and carries a unique request id.

Coordination: Primary takes requests atomically, in order,
checks id (resends response if not new id.)

Execution: Primary executes & stores the response

Agreement: If update, primary sends updated state/result,
req-id and response to all backup RMs (1-phase commit
enough).

Response: primary sends result to the front end

Client Front End

RM

RM

RM

Client Front End RM

primary

Backup

Backup

Backup

….

Lecture 18-10

Fault Tolerance in Passive Replication

The system implements linearizability, since the

primary sequences operations in order.

 If the primary fails, a backup becomes primary by

leader election, and the replica managers that

survive agree on which operations had been

performed at the point when the new primary takes

over.

The above requirement can be met if the replica managers

(primary and backups) are organized as a group and if the

primary uses view-synchronous group communication to send

updates to backups.

 Thus the system remains linearizable in spite of
crashes

However, overhead of election

Lecture 18-11

Active Replication

Request Communication: The request contains a unique identifier
and is multicast to all by a reliable totally-ordered multicast.

Coordination: Group communication ensures that requests are
delivered to each RM in the same order (but may be at different
physical times!).

Execution: Each replica executes the request. (Correct replicas
return same result since they are running the same program, i.e.,
they are replicated state machines)

Agreement: No agreement phase is needed, because of multicast
delivery semantics of requests

Response: Each replica sends response directly to FE

Client Front End RM

RM

Client Front End
RM

….

Lecture 18-12

Fault Tolerance in Active Replication

 RMs work as replicated state machines, playing equivalent

roles. That is, each responds to a given series of requests in

the same way.

If any RM crashes, state is maintained by other correct RMs.

This system implements sequential consistency

Use FIFO-total ordering in multicasts from FE to RM group

Caveat (Out of band): If clients are multi-threaded and

communicate with one another while waiting for responses

from the service, we may need to incorporate causal-total

ordering.

Lecture 18-13

Transactions - One Copy Serializability

• In a non-replicated system, transactions appear to
be performed one at a time in some order. This is
achieved by ensuring a serially equivalent
interleaving of transaction operations.

• One-copy serializability: The effect of transactions
performed by clients on replicated objects should
be the same as if they had been performed one at
a time on a single set of objects (i.e., 1 replica per
object).
– Equivalent to combining serial equivalence + replication

transparency/consistency

Lecture 18-14

Replication + Concurrency Control:

Primary Copy Replication

• For now, assume no crashes/failures

• All the client requests are directed to a single primary RM.

• Concurrency control is applied at the primary.

• To commit a transaction, the primary communicates with
the backup RMs and replies to the client.

• View synchronous comm. gives one-copy serializability

• Disadvantage? Performance is low since primary RM is
bottleneck.

Lecture 18-15

Read One/Write All Replication

• An FE (front end) may communicate with any RM.

• Every write operation must be performed at all of the RMs

– Each contacted RM sets a write lock on the object.

• A read operation can be performed at any single RM

– A contacted RM sets a read lock on the object.

• Consider pairs of conflicting operations of different
transactions on the same object.

– Any pair of write operations will require locks at all of the RMs not
allowed

– A read operation and a write operation will require conflicting locks at
some RM not allowed

One-copy serializability is achieved.

Disadvantage? Failures block the system (esp. writes).

Lecture 18-16

Network Partition
Client + front end

B

withdraw(B, 4)

Client + front end

Replica managers

deposit(B,3);

U T
Network

partition

B

B B

Lecture 18-17

Bad News Bears – CAP Theorem

• In a distributed system we desire
– Consistency: all copies of data should be alike at all times

(e.g., one-copy serializability/sequential consistency)
– Availability: at least one copy of data should be readable and

writable at all times
– Partition-tolerance: in spite of partitions in the system/network,

the system continues to operate

• Unfortunately, you cannot achieve all three
• Can only choose at most 2 out of 3

– Good way to read CAP theorem: under Partition, would you
choose Consistency or Availability

• Conjectured by Eric Brewer in 2000, proved by

Gilbert and Lynch in 2002
• Different systems take different ways around it

– CP: Paxos; AP: Many key-value stores; CA: View Synchrony

Lecture 18-18

Healing from Network Partitions

• During a partition, pairs of conflicting
transactions may have been allowed to execute in
different partitions. The only choice is to take
corrective action after the network has recovered
– Assumption: Partitions heal eventually

• Abort one of the transactions after the partition
has healed

• Basic idea: allow operations to continue in
partitions, but finalize and commit trans. only
after partitions have healed

• But to optimize performance, better to avoid
executing operations that will eventually lead to
aborts…how?

Lecture 18-19

Quorum Approaches

Lecture 18-20

Quorum Approaches

• Quorum approaches used to decide whether
reads and writes are allowed

• There are two types: pessimstic quorums and
optimistic quorums

• In the pessimistic quorum philosophy, updates
are allowed only in a partition that has the
majority of RMs
– Updates are then propagated to the other RMs when the

partition is repaired.
– Any two majority sets intersect, thus consistency is ensured.

Lecture 18-21

Static Quorums

 The decision about how many RMs should be
involved in an operation on replicated data is called
Quorum selection

 Quorum rules state that:

 At least r replicas must be accessed for read

 At least w replicas must be accessed for write

 r + w > N, where N is the number of replicas

 w > N/2

 Each object has a version number or a consistent
timestamp

 Static Quorum predefines r and w , & is a

 pessimistic approach: if partition occurs, update
will be possible in at most one partition

Lecture 18-22

Voting with Static Quorums

 A version of quorum selection where each
replica has a number of votes. Quorum is
reached by majority of votes (N is the total
number of votes)

 e.g., a cache replica may be given a 0 vote

- with r = w = 2, Access time for write is 750 ms

(parallel writes). Access time for read without cache
is 750 ms. Access time for read with cache can be
in the range 175ms to 850ms – why?.

Cache 0 100ms 0ms 0%

Rep1 1 750ms 75ms 1%

Rep2 1 750ms 75ms 1%

Rep3 1 750ms 75ms 1%

Replica votes access time version chk P(failure)

Lecture 18-23

Group Communication: A bulding block

“Member”= process (e.g., an RM)

 Static Groups: group membership is pre-defined

 Dynamic Groups: Members may join and leave, as
necessary

Group

Send

Address
Expansion

Multicast
Comm.

Membership
Management

(~ MP2)

Leave

Fail

Join

Group

Lecture 18-24

Views
 A group membership service maintains group

views, which are lists of current group members.

This is NOT a list maintained by a one member, but…

Each member maintains its own local view

A view v p.i(g) is process p’s understanding of its

group (list of members) in “view number” i:
 Example: v p.0(g) = {p}, v p.1(g) = {p, q}, v p.2 (g) = {p, q, r}, v p.3 (g) = {p,r}

Whenever a member joins or leaves or fails, a new

group view is disseminated, throughout the group.

Member detecting failure of another member reliable multicasts a
“view change” message (requires at least causal-total ordering

for multicasts)

The goal: the order of views received at each member is the
same (i.e., view deliveries are “virtually synchronous”)

Lecture 18-25

Views

An event is said to occur in a view vp,i(g) if the event occurs at
p, and at the time of event occurrence, p has delivered vp,i(g)
but has not yet delivered vp,i+1(g).

Messages sent out in a view i need to be delivered in that view
at all members in the group (“What happens in the View, stays
in the View”)

Requirements for view delivery

 Order: If p delivers vi(g) and then vi+1(g), then no other process q
delivers vi+1(g) before vi(g).

 Integrity: If p delivers vi(g), then p is in all v *, i(g).

 Non-triviality: if process q joins a group and becomes reachable
from process p, then eventually, q will always be present in the
views that delivered at p.

Exception: partitioning of group. Solutions to partitioning:
Primary partition: allow only majority partition to proceed

Allow any and all partitions to proceed

Choice depends on consistency requirements.

Lecture 18-26

View Synchronous Communication
View Synchronous Communication = Views + Reliable

multicast

 The following guarantees are provided for multicast

messages:

Integrity: If p delivered message m, p will not deliver m again.
Also p group (m), i.e., p is in the latest view.

Validity: Correct processes always deliver all messages. That is,
if p delivers message m in view v(g), and some process q v(g)
does not deliver m in view v(g), then the next view v’(g) delivered
at p will not include q.

Agreement: Correct processes deliver the same sequence of
views, and the same set of messages in any view.

 if p delivers m in V, and then delivers V’, then all processes in V
 V’ deliver m in view V

All View Delivery conditions (Order, Integrity and Non-triviality
conditions, from last slide) are satisfied

“What happens in the View, stays in the View”

View and message deliveries are allowed to occur at different
physical times at different members!

Lecture 18-27

Example: View Synchronous Communication

p

q

r

V(p,q,r)

p

q

r

V(p,q,r)

p

q

r

V(p,q,r)

p

q

r

V(p,q,r)

X

X X

V(q,r)

V(q,r)

V(q,r)

V(q,r)

X

X X

Not Allowed Not Allowed

Allowed Allowed

Lecture 18-28

Announcements

• Please collect graded midterms, MPs and HWs

• MP3: By now, you should have started and have
an initial design.

Lecture 18-29

State Transfer

• When a new process joins the group, state
transfer may be needed (at view delivery point) to
bring it up to date
– “state” may be list of all messages delivered so far (wasteful)

– “state” could be list of current server object values (e.g., a
bank database) – could be large

– Important to optimize this state transfer

• View Synchrony = “Virtual Synchrony”

– Provides an abstraction of a synchronous network that hides
the asynchrony of the underlying network from distributed
applications

– But does not violate FLP impossibility or CAP (since does not
deal well with partition)

• Used in ISIS toolkit (NY Stock Exchange)

Lecture 18-30

Optimistic Quorum Approaches

 An Optimistic Quorum selection allows writes to

proceed in any partition.

 This might lead to write-write conflicts. Such
conflicts will be detected when the partition heals
Any writes that violate one-copy serializability will then result in

the transaction (that contained the write) to abort

Still improves performance because partition repair not needed
until commit time (and it’s likely the partition may have healed by
then)

 Optimistic Quorum is practical when:

 Partitions are relatively short-lived

 Conflicting updates are rare

 Conflicts are always detectable

 Damage from conflicts can be easily confined

 Repair of damaged data is possible or an update can be

discarded without consequences

Lecture 18-31

View-based Quorum

An optimistic approach

Quorum is based on views at any time

Uses view-synchronous group communication as a building

block

Once the partition is repaired, participants in the
smaller partition know whom to contact for
updates.

Lecture 18-32

View-based Quorum - details

Views are per object, numbered sequentially and

only updated if necessary

We define thresholds for each of read and write :
 Aw: minimum nodes in a view for write, e.g., Aw > N/2

 Ar: minimum nodes in a view for read

 E.g., Aw + Ar > N

If ordinary quorum cannot be reached for an operation, then
we take a straw poll, i.e., we update views

In a large enough partition for read, Viewsize Ar In a large
enough partition for write, Viewsize Aw

The first update after partition repair forces restoration for
nodes in the smaller partition

Lecture 18-33

Example: View-based Quorum

 Consider: N = 5, w = 5, r = 1, Aw = 3, Ar = 1

1

V1.0

2

V2.0

3

V3.0

4

V4.0

5

V5.0

Initially all nodes
are in

1

V1.0

2

V2.0

3

V3.0

4

V4.0

5

V5.0

Network is
partitioned

1

V1.0

2

V2.0

3

V3.0

4

V4.0

5

V5.0

Read is initiated,
quorum is reached

read

1

V1.0

2

V2.0

3

V3.0

4

V4.0

5

V5.0

write is initiated,
quorum not reached

w X

1

V1.1

2

V2.1

3

V3.1

4

V4.1

5

V5.0

P1 changes view,
writes & updates
views

w

Lecture 18-34

Example: View-based Quorum (cont’d)

1

V1.1

2

V2.1

3

V3.1

4

V4.1

5

V5.0

Partition is repaired

1

V1.1

2

V2.1

3

V3.1

4

V4.1

5

V5.0

P5 initiates read,
has quorum, reads
stale data

r

1

V1.1

2

V2.1

3

V3.1

4

V4.1

5

V5.0

P3 does write,
notices repair

w

1

V1.2

2

V2.2

3

V3.2

4

V4.2

5

V5.2

Views are updated
to include P5; P5 is
informed of updates

1

V1.1

2

V2.1

3

V3.1

4

V4.1

5

V5.0

P5 initiates write,
no quorum, Aw not
met, aborts.

w

X
X
X
X

N = 5, w = 5, r = 1, Aw = 3, Ar = 1

Lecture 18-35

Optional Slides (Not Covered)

Lecture 18-36

Available Copies Approach

A

X

Client + front end

P

B

Client + front end

Replica managers

deposit(A,3);

U T

deposit(B,3);

getBalance(B)

getBalance(A)

Replica managers

Y

M

B

N

A

B

Lecture 18-37

Transactions on Replicated Data

B

A

Client + front end

B B B A A

getBalance(A)

Client + front end

Replica managers
Replica managers

deposit(B,3);

U T

Lecture 18-38

The Impact of RM Failure

• Assume that (i) RM X fails just after T has
performed getBalance; and (ii) RM N fails just
after U has performed getBalance. Both failures
occur before any of the deposit()’s.

• Subsequently, T’s deposit will be performed at
RMs M and P, and U’s deposit will be performed at
RM Y.

• The concurrency control on A at RM X does not
prevent transaction U from updating A at RM Y.

• Solution: Must also serialize RM crashes and
recoveries with respect to entire transactions.

Lecture 18-39

Local Validation (using Our Example)

• From T’s perspective,
– T has read from an object at X X must have failed after T’s

operation.

– T observes the failure of N when it attempts to update the object B
N’s failure must be before T.

– Thus: N fails T reads object A at X; T writes objects B at M and P
T commits X fails.

• From U’s perspective,
– Thus: X fails U reads object B at N; U writes object A at Y U

commits N fails.

• At the time T tries to commit,
– it first checks if N is still not available and if X, M and P are still

available. Only then can T commit.

– It then checks if the failure order is consistent with that of other
transactions (T cannot commit if U has committed)

– If T commits, U’s validation will fail because N has already failed.

• Can be combined with 2PC.

• Caveat: Local validation may not work if partitions occur in
the network

Lecture 18-40

Two Phase Commit Protocol For Transactions

on Replicated Objects

Two level nested 2PC

• In the first phase, the coordinator sends the
canCommit? command to the participants, each
of which then passes it onto the other RMs
involved (e.g., by using view synchronous
communication) and collects their replies before
replying to the coordinator.

• In the second phase, the coordinator sends the
doCommit or doAbort request, which is passed
onto the members of the groups of RMs.

Lecture 18-41

Available Copies Replication

• A client’s read request on an object can be
performed by any RM, but a client’s update
request must be performed across all available
(i.e., non-faulty) RMs in the group.

• As long as the set of available RMs does not
change, local concurrency control achieves one-
copy serializability in the same way as in read-
one/write-all replication.

• May not be true if RMs fail and recover during
conflicting transactions.

