
Lecture 18-1 Lecture 17-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

October 23, 2012

Lecture 17

Two Phase Commit and Paxos
Reading: 21.5.2 (Paxos Sections)

 2012, I. Gupta

Lecture 17-2

Distributed Transactions

 A transaction that invokes operations

at several servers.

T

A

Y

Z

B

C

D

T

T1

T2

T11

T12

T21

T22

A

B

C

D

F

H

K

Flat Distributed Transaction Nested Distributed Transaction

X

Lecture 17-3

Distributed banking transaction

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

 b.withdraw(T, 3);

closeTransaction

T = openTransaction

 A.withdraw(4);

 C.deposit(4);
 B.withdraw(3);
 D.deposit(3);

 closeTransaction

 Note: the coordinator is in one of the servers, e.g. BranchX

Coordinator

Lecture 17-4

 Atomicity principle requires that either all the

distributed operations of a transaction complete, or

all abort.

At some stage, client executes closeTransaction().

Now, atomicity requires that either all participants

(remember these are on the server side) and the

coordinator commit or all abort.

What problem statement is this?

Atomic Commit Problem

Lecture 17-5

Atomic Commit Protocols

Consensus, but it’s impossible in asynchronous networks!

So, need to ensure safety property in real-life implementation.

Never have some agreeing to commit, and others agreeing to

abort. Err on the side of safety.

 First cut: one-phase commit protocol. The coordinator

unilaterally communicates either commit or abort, to all

participants (servers) until all acknowledge.

Doesn’t work when a participant crashes before receiving this

message (partial transaction results are lost).

Does not allow participant to abort the transaction, e.g., under error

conditions.

Lecture 17-6

Atomic Commit Protocols

Consensus, but it’s impossible in asynchronous networks!

So, need to ensure safety property in real-life implementation.

Never have some agreeing to commit, and others agreeing to

abort. Err on the side of safety.

Alternative: Two-phase commit protocol

First phase involves coordinator collecting a vote (commit or abort) from

each participant

Participant stores partial results in permanent storage before voting

Now coordinator makes a decision

If all participants want to commit and no one has crashed, coordinator

multicasts “commit” message

Everyone commits

If any participant has crashed or aborted, coordinator multicasts “abort”

message to all participants

Everyone aborts

Lecture 17-7

RPCs for Two-Phase Commit Protocol

canCommit?(trans)-> Yes / No

Call from coordinator to participant to ask whether it can commit a

transaction. Participant replies with its vote. Phase 1.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a

transaction. Phase 2.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a

transaction. Phase 2.

getDecision(trans) -> Yes / No

Call from participant to coordinator to ask for the decision on a transaction

after it has voted Yes but has still has received no reply within timeout. Used

to recover from server crash or delayed messages.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the

transaction. (May not be required if getDecision() is used)

Lecture 17-8

The two-phase commit protocol

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to each of the participants in

the transaction.

2. When a participant receives a canCommit? request, it replies with its vote

(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by

saving objects in permanent storage. If its vote is No, the participant aborts

immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its own), makes a decision,

and logs this on disk.

(a) If there are no failures and all the votes are Yes, the coordinator

decides to commit the transaction and sends a doCommit request

to each of the participants.

(b) Otherwise the coordinator decides to abort the transaction and

sends doAbort requests to all participants that voted Yes. This is

the step erring on the side of safety.

4. Participants that voted Yes are waiting for a doCommit or doAbort request

from the coordinator. When a participant receives one of these messages, it

acts accordingly – when committed, it makes a haveCommitted call.
• If it times out waiting for a doCommit/doAbort, participant keeps sending a getDecision

to coordinator, until it knows of the decision

Recall that a
server may
crash

Lecture 17-9

Communication in Two-Phase Commit

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3

(waiting for votes)

committed

done

prepared to commit

step

Participant

2

4

(uncertain)

prepared to commit

committed

status step status

 To deal with participant crashes

 Each participant saves tentative updates into permanent storage, right before

replying yes/no in first phase. Retrievable after crash recovery.

Coordinator logs votes and decisions too

 To deal with canCommit? loss

 The participant may decide to abort unilaterally after a timeout for first phase

(participant eventually votes No, and so coordinator will also abort)

 To deal with Yes/No loss, the coordinator aborts the transaction after a timeout

(pessimistic!). It must annouce doAbort to those who sent in their votes.

 To deal with doCommit loss

 The participant may wait for a timeout, send a getDecision request (retries until

reply received). Cannot abort/commit after having voted Yes but before receiving

doCommit/doAbort!

Lecture 17-10

Two Phase Commit (2PC) Protocol

Coordinator Participant

 Execute

• Precommit

Uncertain

•Send request to
each participant

• Wait for replies
(time out possible)

 Commit

•Send COMMIT to
each participant

 Abort

•Send ABORT to
each participant

 Execute

• Precommit

• send YES to
coordinator

• Wait for
decision

 Abort

•Send NO to
coordinator

NO

YES

request

not
ready ready

All
YES

Timeout
or a NO

 Commit

• Make
transaction
visible

 Abort

COMMIT
decision

CloseTrans()

ABORT
decision

Lecture 17-11

Issues with 2PC

• If something goes wrong, need to keep retrying
the 2PC

• Leader failure and election

• Bad participants may cause frequent aborts

• Um, can’t we just solve consensus?

Lecture 17-12

Yes we can!

• But really?

• Paxos algorithm
– Most popular “consensus-solving” algorithm

– Does not solve consensus problem (which would be
impossible, because we already proved that)

– But provides safety and eventual liveness

– A lot of systems use it

» Zookeeper (Yahoo!), Google Chubby, and many other
companies

• Paxos invented by? (take a guess)

Lecture 17-13

Yes we can!

• Paxos invented by Leslie Lamport

• Consensus, in brief
– Processes have different values + need everyone to decide

same value + cannot have trivial solutions

– Also, if everyone votes V (Yes or No), then the decision is V

• Paxos provides safety and eventual liveness
– Safety: Consensus is not violated

– Eventual Liveness: If things go well sometime in the future
(messages, failures, etc.), there is a good chance consensus
will be reached. But there is no guarantee.

Lecture 17-14

Political Science 101, i.e., Paxos Groked

• Paxos has rounds; each round has a unique ballot
id

• Rounds are asynchronous
– Time synchronization not required

– Use timeouts; may be pessimistic

• Each round broken into phases (also
asynchronous)
– Phase 1: A leader is elected (Election)

– Phase 2: Leader proposes a value, processes ack (Bill)

– Phase 3: Leader multicasts final value (Law)

Slides borrow heavily from Jeff Chase’s material (Duke U.)

Lecture 17-15

Phase 1 – Election
• Potential leader chooses a unique ballot id, higher

than anything so far

• Sends to all processes

• Processes wait, respond once to highest ballot id
– If potential leader sees a higher ballot id, it can’t be a leader

– Paxos tolerant to multiple leaders, but we’ll discuss 1 leader

– Processes also log received ballot ID on disk

• If a process has in a previous round decided on a
value v’, it includes value v’ in its response

• If majority respond OK then you are the leader
– If no one has majority, start new round

• A round cannot have two leaders (why?)

Please elect me! OK!

Lecture 17-16

Phase 2 – Proposal (Bill)

• Leader sends proposed value v to all
– use v’ if some process already decided in a previous round

• Recipient logs on disk; responds OK

Please elect me! OK!

Value v ok?

OK!

Lecture 17-17

Phase 3 – Decision (Law)

• If leader hears a majority of OKs, it lets everyone
know of the decision

• Recipients receive decision, log it on disk

Please elect me! OK!

Value v ok?

OK!

v!

Lecture 17-18

Which is the point of no-return?

Please elect me! OK!

Value v ok?

OK!

v!

Lecture 17-19

Which is the point of no-return?

• If a majority of processes hear proposed value
and accept it (i.e., are about to/have responded
with an OK!)

• Processes may not know it yet, but a decision has
been made for the group
– Even leader does not know it yet

• What if leader fails after that?
– Keep having rounds until some round completes

Please elect me! OK!

Value v ok?

OK!

v!

Lecture 17-20

Safety

• If some round has a majority hearing proposed
value v’ and accepting it (middle of Phase 2), then
each subsequent round either: 1) chooses v’ as
decision or 2) round fails

• Proof:
– Potential leader waits for majority of OKs in Phase 1

– At least one will contain v’

– It will choose to send out v’ in Phase 2

• Success requires a majority, and any two majority
sets intersect

Please elect me! OK!

Value v ok?

OK!

v!

Lecture 17-21

What could go wrong?

• Process fails
– Majority does not include it

– When process restarts, it uses disk to retrieve a past decision
(if any) and past-seen ballot ids. Tries to know of past
decisions.

• Leader fails
– Start another round

• Messages dropped
– If too flaky, just start another round

• Note that anyone can start a round any time

• Protocol may never end – tough luck, buddy!
– If things go well sometime in the future, consensus reached

 Please elect me! OK!

Value v ok?

OK!

v!

Lecture 17-22

What could go wrong?

• A lot more!

• This is a highly simplified view of Paxos.

• See Lamport’s original paper:
http://research.microsoft.com/en-
us/um/people/lamport/pubs/paxos-simple.pdf

Please elect me! OK!

Value v ok?

OK!

v!

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

Lecture 17-23

Etc.

• MP3 has been released last week
– You’re building a distributed file system, similar to HDFS

– Start NOW

• HW3 will be out today

