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Give it a thought 

Have you ever wondered why vendors of (distributed) software 
solutions always only offer solutions that promise five-9’s 
reliability, seven-9’s reliability, but never 100%  reliability? 
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Give it a thought 

Have you ever wondered why software vendors always only offer 
solutions that promise five-9’s reliability, seven-9’s reliability, 
but never 100%  reliability? 

 

The fault does not lie with Microsoft or Amazon or Google 

 

The fault lies in the impossibility of consensus 
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What is Consensus? 

• N processes 

• Each process p has  
– input variable xp : initially either 0 or 1 

– output variable yp : initially b (b=undecided) – can be 
changed only once 

• Consensus problem: design a protocol so that 
either 

1. all non-faulty processes set their output variables to 0  

2. Or non-faulty all processes set their output variables to 1 

3. There is at least one initial state that leads to each outcomes 
1 and 2 above 

4. (There might be other conditions too, but we’ll consider the 
above weaker version of the problem). 
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Let’s Solve Consensus! 

• Uh, what’s the model? (assumptions!) 

• Processes fail only by crash-stopping 

• Synchronous system: bounds on 
– Message delays 

– Max time for each process step 

e.g., multiprocessor (common clock across processors) 

• Asynchronous system: no such bounds! 

    e.g., The Internet! The Web! 
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For a system with at most f processes crashing, the algorithm proceeds in 
f+1 rounds (with timeout), using basic multicast (B-multicast).  

- A round is a numbered period of time where processes know its start 
and end (kinda like an hour, only smaller) 

 

- Valuesr
i: the set of proposed values known to process Pi at the beginning 

of round r. 
- Initially Values0

i = {} ; Values1
i = {vi=xp} 

  for round r = 1 to f+1 do 

  multicast (Values ri) 

   Values r+1
i  Valuesr

i 

    for each Vj received  

     Values r+1
i = Values r+1

i   Vj 

                 end 

  end 

 yp=di = minimum(Values f+1
i) 

Consensus in Synchronous Systems 



Lecture 13-7 

Why does the Algorithm Work? 

• Proof by contradiction. 

• Assume that two non-faulty processes differ in their final set 
of values.  

• Suppose pi and pj are these processes. 

• Assume that pi possesses a value v that pj does not 
possess. 
 In the last (f+1) round, some third process, pk, sent v to pi, but crashed 

before sending v to pj. 

 Any process sending v in the penultimate (f) round must have 
crashed; otherwise, both pk and pj should have received v. 

 Proceeding in this way, we infer at least one crash in each of the 
preceding rounds.  

 But we have assumed at most f crashes can occur; yet there are f+1 
rounds ==> contradiction. 
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Consensus in an Asynchronous System 

• Messages have arbitrary delay, processes 
arbitrarily slow 

• Impossible to achieve! 
– even a single failed process is enough to avoid the system 

from reaching agreement! 

– Key observation: a slow process indistinguishable from a 
crashed process 

• Impossibility Applies to any protocol that claims 
to solve consensus! 

 

• Proved in a now-famous result by Fischer, Lynch 
and Patterson, 1983  (FLP) 
– Stopped many distributed system designers dead in their 

tracks 

– A lot of claims of “perfect reliability” vanished overnight 
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Let’s look at the proof of the impossibility! 
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Recall 

• Each process p has a state 
– program counter, registers, stack, local variables  

– input register xp : initially either 0 or 1 

– output register yp : initially b (b=undecided) 

• Consensus Problem: design a protocol 
so that either 

1. all non-faulty processes set their output variables to 0  

2. Or non-faulty all processes set their output variables 
to 1 

3. (No trivial solutions allowed) 
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p p’ 

Global Message Buffer 

send(p’,m) 
receive(p’) 

 may return null 

“Network” 
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Different Definition of “State”  

• State of a process 

• Configuration: = Global state. Collection of states, 
one per process; and state of the global buffer 

• Each Event consists atomically of three sub-steps 
done together: 
– receipt of a message by a process (say p), and 

– processing of message, and 

– sending out of all necessary messages by p (into the global 
message buffer) 

• Note: this event is different from the Lamport 
events 

• Schedule: sequence of events 
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C 

C’ 

C’’ 

Event e’=(p’,m’) 

Event e’’=(p’’,m’’) 

Configuration C 

Schedule s=(e’,e’’) 

C 

C’’ 

Equivalent 
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Lemma 1 

C 

C’ 

C’’ 

Schedule s1 

s2 

Schedule s2 

s1 

s1 and s2  

•can each be applied 

to C 

•involve 

disjoint sets of  

receiving processes 

Schedules are commutative  
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State Valencies  

• Let config. C have a set of decision values 
V reachable from it 
– If |V| = 2, config. C is bivalent (i.e., system could lead to 

either 0-consensus or 1-consensus) 

– If |V| = 1, config. C is said univalent. If it leads to 0-
consensus, then we call it 0-valent (similarly 1-valent) 

 

• Bivalent means outcome is unpredictable  
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What we’ll Show 

1. There exists an initial configuration that is 
bivalent 

2. Starting from a bivalent config., there is always 
another bivalent config. that is reachable 
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Lemma 2 

Some initial configuration is bivalent 

•Suppose all initial configurations were either 0-valent or 1-valent  

 (but none bivalent) 

•Place all configurations side-by-side, where adjacent configurations 

 differ in initial xp value for exactly one process. 

•Creates a lattice of states 

 

  1         1          0        1        0         1 

•There has to be some adjacent pair of 1-valent and 0-valent configs. 
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Some initial configuration is bivalent 

  1         1          0        1        0         1 

•There has to be some adjacent pair of 1-valent and 0-valent configs. 

•Let the process p be the one with a different state across these two  

configs.  

•Now consider the world where process p  has crashed 

 
 

Both these initial configs. 

are indistinguishable. But 

one gives a 0 decision 

value. The other gives a 1 

decision value.  

So, both these initial 

configs. are bivalent 

when there is a failure 

 

Lemma 2 
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What we’ll Show 

1. ✓There exists an initial configuration that is 
bivalent 

2. Starting from a bivalent config., there is always 
another bivalent config. that is reachable 
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Lemma 3 

Starting from a bivalent config., there is 
always another bivalent config. that is 
reachable 
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A bivalent initial config. 

let e=(p,m) be an event that is 

applicable to the initial config. 

Let C be the set of configs. reachable  

  without applying e 

Lemma 3 

C 
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A bivalent initial config. 

let e=(p,m) be an applicable  

    event to the initial config. 

Let C be the set of configs. reachable  

  without applying e 

 e       e       e           e        e 
Let D be the set of configs.  

obtained by applying single event e  

to any config. in C 

Lemma 3 

C 
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 [don’t apply  

  event e=(p,m)] 

Lemma 3 

D 

C 

 e       e       e           e        e 

bivalent 

C 
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Claim. Set D contains a bivalent config. 

Proof.  By contradiction. That is, suppose D 
has only 0- and 1- valent states (and no 
bivalent ones) 

• There are states D0 and D1 in D, and C0 and 
C1 in C  such that  

 
– D0 is 0-valent, D1 is 1-valent 

– D0=C0 foll. by e=(p,m) 

– D1=C1 foll. by e=(p,m) 

– And C1 = C0 followed by some event e’=(p’,m’) 

 (why?) 
 

 

 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  

  event e=(p,m)] 

C 
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Proof. (contd.) 

 

• Case I: p’ is not p 

 

• Case II: p’ same as p 

 

 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  

  event e=(p,m)] 

C0 

D1 

D0 C1 

e 

e e’ 

e’ 

Why? (Lemma 1) 

But D0 is then bivalent! 
C 
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Proof. (contd.) 

 

• Case I: p’ is not p 

 

• Case II: p’ same as p 

 

 

D 

C 

 e       e       e           e        e 

bivalent 

 [don’t apply  

  event e=(p,m)] 

C0 

D1 

D0 
C1 

e 
e’ 

A 

E0 

e 

sch. s 

sch. s 

E1 

sch. s 

(e’,e) 

e 

sch. s 

• finite 

• deciding run from C0 

(i.e., A decides 0) 

• p takes no steps 

But A is then bivalent! 
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Lemma 3 

Starting from a bivalent config., there 
is always another bivalent config. 
that is reachable 
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Putting it all Together 

• ✔Lemma 2: There exists an initial configuration 
that is bivalent 

• ✔Lemma 3: Starting from a bivalent config., there 
is always another bivalent config. that is 
reachable 

 

• Theorem (Impossibility of Consensus): There is 
always a run of events in an asynchronous 
distributed system (given any algorithm) such 
that the group of processes never reaches 
consensus (i.e., always stays bivalent) 
– “The devil’s advocate always has a way out” 
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Why is Consensus Important?  

Many problems in distributed systems are 
equivalent to (or harder than) consensus! 
– Agreement, e.g., on an integer (harder than consensus, since 

it can be used to solve consensus) is impossible! 

– Leader election is impossible! 

» A leader election algorithm can be designed using a 
given consensus algorithm as a black box 

» A consensus protocol can be designed using a given 
leader election algorithm as a black box 

– Accurate Failure Detection is impossible! 

» Should I mark a process that has not responded for 
the last 60 seconds as failed? (It might just be very, 
very, slow) 

» Completeness + Accuracy impossible to guarantee 
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What can we do about it? 

• One way is to design Probabilistic 
Algorithms 
– E.g., probabilistic accuracy in failure detector algorithms 

• Another way is to design safe algorithms 
that have some chance (when network is 
good) of making a decision, e.g., Paxos 
– (We’ll discuss this later in the course)  

– A lot of companies/datacenters use Paxos or its variants 
(e.g., Google’s Chubby system) 
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Summary 

• Consensus Problem  
– agreement in distributed systems 

– Solution exists in synchronous system model (e.g., 
supercomputer) 

– Impossible to solve in an asynchronous system (e.g., 
Internet, Web) 

» Key idea: with only one process failure and 
arbitrarily slow processes, there are always 
sequences of events for the system to decide any 
which way. Regardless of which consensus 
algorithm is running underneath. 

– FLP impossibility proof 
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Next Week 

• Thursday – HW2 due 

 

• Midterm next Tuesday October 16th 
– Location: Here! (1310 DCL) 

– Syllabus: Lectures 1-12, HWs1-2, MPs1-2. 

– Closed book, closed notes. NO cheatsheets or calculators. 

1. Multiple choice questions 

2. Big problems: like HW problems, either design or application 

• Practice midterm posted on Website 
(Assignments page) – no solutions will be posted 
– Please use our office hours! 
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Optional Slides (Not Covered) 
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Easier Consensus Problem 

Easier Consensus Problem: some process eventually 
sets yp to be 0 or 1 

Only one process crashes – we’re free to choose which 
one 

Consensus Protocol correct if 

1. No accessible config. (config. reachable from an 
initial config.) has > 1 decision value 

2. For each v in {0,1}, there is an accessible config. 
(reachable from some initial state) that has value v  

– avoids trivial solution to the consensus problem 


