
Lecture 13-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

October 9, 2012

Lecture 13

(Impossibility of) Consensus

Reading: Paper on Website (Sections 1-3)

 2012, I. Gupta

Lecture 13-2

Give it a thought

Have you ever wondered why vendors of (distributed) software
solutions always only offer solutions that promise five-9’s
reliability, seven-9’s reliability, but never 100% reliability?

Lecture 13-3

Give it a thought

Have you ever wondered why software vendors always only offer
solutions that promise five-9’s reliability, seven-9’s reliability,
but never 100% reliability?

The fault does not lie with Microsoft or Amazon or Google

The fault lies in the impossibility of consensus

Lecture 13-4

What is Consensus?

• N processes

• Each process p has
– input variable xp : initially either 0 or 1

– output variable yp : initially b (b=undecided) – can be
changed only once

• Consensus problem: design a protocol so that
either

1. all non-faulty processes set their output variables to 0

2. Or non-faulty all processes set their output variables to 1

3. There is at least one initial state that leads to each outcomes
1 and 2 above

4. (There might be other conditions too, but we’ll consider the
above weaker version of the problem).

Lecture 13-5

Let’s Solve Consensus!

• Uh, what’s the model? (assumptions!)

• Processes fail only by crash-stopping

• Synchronous system: bounds on
– Message delays

– Max time for each process step

e.g., multiprocessor (common clock across processors)

• Asynchronous system: no such bounds!

 e.g., The Internet! The Web!

Lecture 13-6

For a system with at most f processes crashing, the algorithm proceeds in
f+1 rounds (with timeout), using basic multicast (B-multicast).

- A round is a numbered period of time where processes know its start
and end (kinda like an hour, only smaller)

- Valuesr
i: the set of proposed values known to process Pi at the beginning

of round r.
- Initially Values0

i = {} ; Values1
i = {vi=xp}

 for round r = 1 to f+1 do

 multicast (Values ri)

 Values r+1
i  Valuesr

i

 for each Vj received

 Values r+1
i = Values r+1

i  Vj

 end

 end

 yp=di = minimum(Values f+1
i)

Consensus in Synchronous Systems

Lecture 13-7

Why does the Algorithm Work?

• Proof by contradiction.

• Assume that two non-faulty processes differ in their final set
of values.

• Suppose pi and pj are these processes.

• Assume that pi possesses a value v that pj does not
possess.
 In the last (f+1) round, some third process, pk, sent v to pi, but crashed

before sending v to pj.

 Any process sending v in the penultimate (f) round must have
crashed; otherwise, both pk and pj should have received v.

 Proceeding in this way, we infer at least one crash in each of the
preceding rounds.

 But we have assumed at most f crashes can occur; yet there are f+1
rounds ==> contradiction.

Lecture 13-8

Consensus in an Asynchronous System

• Messages have arbitrary delay, processes
arbitrarily slow

• Impossible to achieve!
– even a single failed process is enough to avoid the system

from reaching agreement!

– Key observation: a slow process indistinguishable from a
crashed process

• Impossibility Applies to any protocol that claims
to solve consensus!

• Proved in a now-famous result by Fischer, Lynch
and Patterson, 1983 (FLP)
– Stopped many distributed system designers dead in their

tracks

– A lot of claims of “perfect reliability” vanished overnight

Lecture 13-9

Let’s look at the proof of the impossibility!

Lecture 13-10

Recall

• Each process p has a state
– program counter, registers, stack, local variables

– input register xp : initially either 0 or 1

– output register yp : initially b (b=undecided)

• Consensus Problem: design a protocol
so that either

1. all non-faulty processes set their output variables to 0

2. Or non-faulty all processes set their output variables
to 1

3. (No trivial solutions allowed)

Lecture 13-11

p p’

Global Message Buffer

send(p’,m)
receive(p’)

 may return null

“Network”

Lecture 13-12

Different Definition of “State”

• State of a process

• Configuration: = Global state. Collection of states,
one per process; and state of the global buffer

• Each Event consists atomically of three sub-steps
done together:
– receipt of a message by a process (say p), and

– processing of message, and

– sending out of all necessary messages by p (into the global
message buffer)

• Note: this event is different from the Lamport
events

• Schedule: sequence of events

Lecture 13-13

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent

Lecture 13-14

Lemma 1

C

C’

C’’

Schedule s1

s2

Schedule s2

s1

s1 and s2

•can each be applied

to C

•involve

disjoint sets of

receiving processes

Schedules are commutative

Lecture 13-15

State Valencies

• Let config. C have a set of decision values
V reachable from it
– If |V| = 2, config. C is bivalent (i.e., system could lead to

either 0-consensus or 1-consensus)

– If |V| = 1, config. C is said univalent. If it leads to 0-
consensus, then we call it 0-valent (similarly 1-valent)

• Bivalent means outcome is unpredictable

Lecture 13-16

What we’ll Show

1. There exists an initial configuration that is
bivalent

2. Starting from a bivalent config., there is always
another bivalent config. that is reachable

Lecture 13-17

Lemma 2

Some initial configuration is bivalent

•Suppose all initial configurations were either 0-valent or 1-valent

 (but none bivalent)

•Place all configurations side-by-side, where adjacent configurations

 differ in initial xp value for exactly one process.

•Creates a lattice of states

 1 1 0 1 0 1

•There has to be some adjacent pair of 1-valent and 0-valent configs.

Lecture 13-18

Some initial configuration is bivalent

 1 1 0 1 0 1

•There has to be some adjacent pair of 1-valent and 0-valent configs.

•Let the process p be the one with a different state across these two

configs.

•Now consider the world where process p has crashed

Both these initial configs.

are indistinguishable. But

one gives a 0 decision

value. The other gives a 1

decision value.

So, both these initial

configs. are bivalent

when there is a failure

Lemma 2

Lecture 13-19

What we’ll Show

1. ✓There exists an initial configuration that is
bivalent

2. Starting from a bivalent config., there is always
another bivalent config. that is reachable

Lecture 13-20

Lemma 3

Starting from a bivalent config., there is
always another bivalent config. that is
reachable

Lecture 13-21

A bivalent initial config.

let e=(p,m) be an event that is

applicable to the initial config.

Let C be the set of configs. reachable

 without applying e

Lemma 3

C

Lecture 13-22

A bivalent initial config.

let e=(p,m) be an applicable

 event to the initial config.

Let C be the set of configs. reachable

 without applying e

 e e e e e
Let D be the set of configs.

obtained by applying single event e

to any config. in C

Lemma 3

C

Lecture 13-23

 [don’t apply

 event e=(p,m)]

Lemma 3

D

C

 e e e e e

bivalent

C

Lecture 13-24

Claim. Set D contains a bivalent config.

Proof. By contradiction. That is, suppose D
has only 0- and 1- valent states (and no
bivalent ones)

• There are states D0 and D1 in D, and C0 and
C1 in C such that

– D0 is 0-valent, D1 is 1-valent

– D0=C0 foll. by e=(p,m)

– D1=C1 foll. by e=(p,m)

– And C1 = C0 followed by some event e’=(p’,m’)

 (why?)

D

C

 e e e e e

bivalent

 [don’t apply

 event e=(p,m)]

C

Lecture 13-25

Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply

 event e=(p,m)]

C0

D1

D0 C1

e

e e’

e’

Why? (Lemma 1)

But D0 is then bivalent!
C

Lecture 13-26

Proof. (contd.)

• Case I: p’ is not p

• Case II: p’ same as p

D

C

 e e e e e

bivalent

 [don’t apply

 event e=(p,m)]

C0

D1

D0
C1

e
e’

A

E0

e

sch. s

sch. s

E1

sch. s

(e’,e)

e

sch. s

• finite

• deciding run from C0

(i.e., A decides 0)

• p takes no steps

But A is then bivalent!

Lecture 13-27

Lemma 3

Starting from a bivalent config., there
is always another bivalent config.
that is reachable

Lecture 13-28

Putting it all Together

• ✔Lemma 2: There exists an initial configuration
that is bivalent

• ✔Lemma 3: Starting from a bivalent config., there
is always another bivalent config. that is
reachable

• Theorem (Impossibility of Consensus): There is
always a run of events in an asynchronous
distributed system (given any algorithm) such
that the group of processes never reaches
consensus (i.e., always stays bivalent)
– “The devil’s advocate always has a way out”

Lecture 13-29

Why is Consensus Important?

Many problems in distributed systems are
equivalent to (or harder than) consensus!
– Agreement, e.g., on an integer (harder than consensus, since

it can be used to solve consensus) is impossible!

– Leader election is impossible!

» A leader election algorithm can be designed using a
given consensus algorithm as a black box

» A consensus protocol can be designed using a given
leader election algorithm as a black box

– Accurate Failure Detection is impossible!

» Should I mark a process that has not responded for
the last 60 seconds as failed? (It might just be very,
very, slow)

» Completeness + Accuracy impossible to guarantee

Lecture 13-30

What can we do about it?

• One way is to design Probabilistic
Algorithms
– E.g., probabilistic accuracy in failure detector algorithms

• Another way is to design safe algorithms
that have some chance (when network is
good) of making a decision, e.g., Paxos
– (We’ll discuss this later in the course)

– A lot of companies/datacenters use Paxos or its variants
(e.g., Google’s Chubby system)

Lecture 13-31

Summary

• Consensus Problem
– agreement in distributed systems

– Solution exists in synchronous system model (e.g.,
supercomputer)

– Impossible to solve in an asynchronous system (e.g.,
Internet, Web)

» Key idea: with only one process failure and
arbitrarily slow processes, there are always
sequences of events for the system to decide any
which way. Regardless of which consensus
algorithm is running underneath.

– FLP impossibility proof

Lecture 13-32

Next Week

• Thursday – HW2 due

• Midterm next Tuesday October 16th
– Location: Here! (1310 DCL)

– Syllabus: Lectures 1-12, HWs1-2, MPs1-2.

– Closed book, closed notes. NO cheatsheets or calculators.

1. Multiple choice questions

2. Big problems: like HW problems, either design or application

• Practice midterm posted on Website
(Assignments page) – no solutions will be posted
– Please use our office hours!

Lecture 13-33

Optional Slides (Not Covered)

Lecture 13-34

Easier Consensus Problem

Easier Consensus Problem: some process eventually
sets yp to be 0 or 1

Only one process crashes – we’re free to choose which
one

Consensus Protocol correct if

1. No accessible config. (config. reachable from an
initial config.) has > 1 decision value

2. For each v in {0,1}, there is an accessible config.
(reachable from some initial state) that has value v

– avoids trivial solution to the consensus problem

