
Lecture 12-1

Computer Science 425

Distributed Systems

CS 425 / CSE 424 / ECE 428

Fall 2012

Indranil Gupta (Indy)

October 4, 2012

Lecture 12

Mutual Exclusion
Reading: Sections 15.2

 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou

Lecture 12-2

Why Mutual Exclusion?

• Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.
– Both ATMs read initial amount of $1000 concurrently from the

bank’s cloud server

– Both ATMs add $10,000 to this amount (locally at the ATM)

– Both write the final amount to the server

– What’s wrong?

Lecture 12-3

• Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.
– Both ATMs read initial amount of $1000 concurrently from the

bank’s cloud server

– Both ATMs add $10,000 to this amount (locally at the ATM)

– Both write the final amount to the server

– What’s wrong?

• The ATMs need mutually exclusive access to your
account entry at the server (or, to executing the
code that modifies the account entry)

Why Mutual Exclusion?

Lecture 12-4

Critical section problem: Piece of code (at all
clients) for which we need to ensure there is at
most one client executing it at any point of time.

 Solutions:

 Semaphores, mutexes, etc. in single-node operating
systems

 Message-passing-based protocols in distributed systems:

 enter() the critical section

 AccessResource() in the critical section

 exit() the critical section

 Distributed mutual exclusion requirements:

 Safety – At most one process may execute in CS at any time

 Liveness – Every request for a CS is eventually granted

 Ordering (desirable) – Requests are granted in the order
 they were made

Mutual Exclusion

Lecture 12-5

Refresher - Semaphores

• To synchronize access of multiple threads to
common data structures

• Semaphore S=1;
Allows two operations: wait and signal

1. wait(S) (or P(S)):

 while(1){ // each execution of the while loop is atomic

 if (S > 0)

 S--;

 break;

 }

Each while loop execution and S++ are each atomic operations

– how?

2. signal(S) (or V(S)):

 S++; // atomic

Lecture 12-6

Refresher - Semaphores

• To synchronize access of multiple threads to
common data structures

• Semaphore S=1;
Allows two operations: wait and signal

1. wait(S) (or P(S)):

 while(1){ // each execution of the while loop is atomic

 if (S > 0)

 S--;

 break;

 }

Each while loop execution and S++ are each atomic operations

– how?

2. signal(S) (or V(S)):

 S++; // atomic

enter()

exit()

Lecture 12-7

How are semaphores used?

semaphore S=1;

ATM1:

 wait(S); // enter

 // critical section

 obtain bank amount;

 add in deposit;

 update bank amount;

 signal(S); // exit

extern semaphore S;

ATM2

 wait(S); // enter

 // critical section

 obtain bank amount;

 add in deposit;

 update bank amount;

 signal(S); // exit

One Use: Mutual Exclusion – Bank ATM example

Lecture 12-8

Distributed Mutual Exclusion:

Performance Evaluation Criteria

• Bandwidth: the total number of messages sent in each entry
and exit operation.

• Client delay: the delay incurred by a process at each entry
and exit operation (when no other process is in, or waiting)

 (We will prefer mostly the entry operation.)

• Synchronization delay: the time interval between one
process exiting the critical section and the next process
entering it (when there is only one process waiting)

• These translate into throughput -- the rate at which the
processes can access the critical section, i.e., x processes
per second.

(these definitions more correct than the ones in the textbook)

Lecture 12-9

Assumptions/System Model

• For all the algorithms studied, we make the
following assumptions:

– Each pair of processes is connected by reliable channels
(such as TCP).

– Messages are eventually delivered to recipient in FIFO
order.

– Processes do not fail.

Lecture 12-10

A central coordinator (master or leader)
 Is elected (which algorithm?)

 Grants permission to enter CS & keeps a queue of requests to enter the CS.

 Ensures only one process at a time can access the CS

 Has a special token message, which it can give to any process to access CS.

 Operations
To enter a CS Send a request to the coord & wait for token.

On exiting the CS Send a message to the coord to release the token.

Upon receipt of a request, if no other process has the token, the coord
replies with the token; otherwise, the coord queues the request.

Upon receipt of a release message, the coord removes the oldest entry in the
queue (if any) and replies with a token.

 Features:
 Safety, liveness are guaranteed

 Ordering also guaranteed (what kind?)

 Requires 2 messages for entry + 1 messages for exit operation.

 Client delay: one round trip time (request + grant)

 Synchronization delay: 2 message latencies (release + grant)

 The coordinator becomes performance bottleneck and single point of
failure.

1. Centralized Control of Mutual Exclusion

Lecture 12-11

Processes are organized in a logical ring: pi has a
communication channel to p(i+1)mod N.

Operations:
Only the process holding the token can enter the CS.

To enter the critical section, wait passively for the token. When in
CS, hold on to the token and don’t release it.

To exit the CS, send the token onto your neighbor.

 If a process does not want to enter the CS when it receives the
token, it simply forwards the token to the next neighbor.

2. Token Ring Approach

P0

P1

P2

P3

PN-1

Previous holder of token

next holder of
token

current holder
of token

Features:
Safety & liveness are guaranteed

 Ordering is not guaranteed.

Bandwidth: 1 message per exit

Client delay: 0 to N message
transmissions.

Synchronization delay between one
process’s exit from the CS and the
next process’s entry is between 1 and
N-1 message transmissions.

Lecture 12-12

3. Timestamp Approach: Ricart & Agrawala

Processes requiring entry to critical section multicast a request, and can

enter it only when all other processes have replied positively.

Messages requesting entry are of the form <T,pi>, where T is the sender’s

timestamp (from a Lamport clock) and pi the sender’s identity (used to

break ties in T).

To enter the CS

 set state to wanted

 multicast “request” to all processes (including timestamp) – use R-multicast

 wait until all processes send back “reply”

 change state to held and enter the CS

 On receipt of a request <Ti, pi> at pj:

 if (state = held) or (state = wanted & (Tj, pj)<(Ti,pi)), // lexicographic ordering

 enqueue request

 else “reply” to pi

 On exiting the CS

 change state to release and “reply” to all queued requests.

Lecture 12-13

Ricart & Agrawala’s Algorithm

On initialization
 state := RELEASED;
To enter the section
 state := WANTED;
 Multicast request to all processes; request processing deferred here
 T := request’s timestamp;
 Wait until (number of replies received = (N – 1));
 state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
 if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
 then
 queue request from pi without replying;
 else
 reply immediately to pi;
 end if
To exit the critical section
 state := RELEASED;
 reply to any queued requests;

Lecture 12-14

Ricart & Agrawala’s Algorithm

p
3

34

Reply

34

41

41

41

34

p
1

p
2

Reply
Reply

Lecture 12-15

Analysis: Ricart & Agrawala

Safety, liveness, and ordering (causal) are

guaranteed

Why?

Bandwidth: 2(N-1) messages per entry

operation

N-1 unicasts for the multicast request + N-1 replies

N messages if the underlying network supports multicast

N-1 unicast messages per exit operation

1 multicast if the underlying network supports

multicast

Client delay: one round-trip time

Synchronization delay: one message

transmission time

Lecture 12-16

4. Timestamp Approach: Maekawa’s Algorithm

 Setup

 Each process pi is associated with a voting set vi (of processes)

 Each process belongs to its own voting set

 The intersection of any two voting sets is non-empty

 Each voting set is of size K

 Each process belongs to M other voting sets

Maekawa showed that K=M=N works best

 One way of doing this is to put N processes in a N by N matrix

and for each pi, vi = row + column containing pi

Lecture 12-17

Maekawa Voting Set with N=4

p1 p2

p3 p4

p1’s voting set = v1
v2

v3 v4

p1 p2
p3 p4

Lecture 12-18

Timestamp Approach: Maekawa’s Algorithm

 Protocol

 Each process pi is associated with a voting set vi (of processes)

To access a critical section, pi requests permission from all other

processes in its own voting set vi

Voting set member gives permission to only one requestor at a

time, and queues all other requests

Guarantees safety

May not guarantee liveness (may deadlock)

Lecture 12-19

Maekawa’s Algorithm – Part 1

On initialization

 state := RELEASED;

 voted := FALSE;

For pi to enter the critical section

 state := WANTED;

 Multicast request to all processes in Vi – {pi};

 Wait until (number of replies received = (K – 1));

 state := HELD;

On receipt of a request from pi at pj (i ≠ j)

 if (state = HELD or voted = TRUE)

 then

 queue request from pi without replying;

 else

 send reply to pi;

 voted := TRUE;

 end if

Continues on

next slide

X X
X X

X X

Lecture 12-20

Maekawa’s Algorithm – Part 2

For pi to exit the critical section

 state := RELEASED;

 Multicast release to all processes in Vi – {pi};

On receipt of a release from pi at pj (i ≠ j)

 if (queue of requests is non-empty)

 then

 remove head of queue – from pk, say;

 send reply to pk;

 voted := TRUE;

 else

 voted := FALSE;

 end if

X X
X X

Lecture 12-21

Maekawa’s Algorithm – Analysis

• 2N messages per entry, N messages per exit
– Better than Ricart and Agrawala’s (2(N-1) and N-1 messages)

• Client delay: One round trip time

• Synchronization delay: 2 message transmission
times

Lecture 12-22

Summary

• Mutual exclusion
– Semaphores review

– Coordinator-based token

– Token ring

– Ricart and Agrawala’s timestamp algo.

– Maekawa’s algo.

• MP2 due this Sunday midnight
– By now you should have a fully working system, and be taking

measurements

• Demos next Monday 2-6 pm
– Watch Piazza for Signup sheet

