Computer Science 425
Distributed Systems

CS 425/ CSE 424 | ECE 428

Fall 2012

Indranil Gupta (Indy)
October 4, 2012
Lecture 12

Mutual Exclusion
Reading: Sections 15.2

© 2012, I. Gupta, K. Nahrtstedt, S. Mitra, N. Vaidya, M. T. Harandi, J. Hou | Lecture 12-1 '

Why Mutual Exclusion? |

e Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.

— Both ATMs read initial amount of $1000 concurrently from the
bank’s cloud server

— Both ATMs add $10,000 to this amount (locally at the ATM)
— Both write the final amount to the server
— What’s wrong?

| Lecture 12-2 .

Why Mutual Exclusion? |

e Bank’s Servers in the Cloud: Think of two
simultaneous deposits of $10,000 into your bank
account, each from one ATM.

— Both ATMs read initial amount of $1000 concurrently from the
bank’s cloud server

— Both ATMs add $10,000 to this amount (locally at the ATM)
— Both write the final amount to the server
— What’s wrong?

« The ATMs need mutually exclusive access to your
account entry at the server (or, to executing the
code that modifies the account entry)

| Lecture 12-3 '

Mutual Exclusion |

**Critical section problem: Piece of code (at all
clients) for which we need to ensure there is at
most one client executing it at any point of time.

¢]
% Solutions:

J Semaphores, mutexes, etc. in single-node operating
systems

J Message-passing-based protocols in distributed systems:
X enter() the critical section
X AccessResource() in the critical section
** exit() the critical section
] Distributed mutual exclusion requirements:
** Safety — At most one process may execute in CS at any time

A/

% Liveness — Every request for a CS is eventually granted
** Ordering (desirable) — Requests are granted in the order

they were made
| Lecture 12-4 '

Refresher - Semaphores |

 To synchronize access of multiple threads to
common data structures

« Semaphore S=1;
Allows two operations: wait and signal
1. wait(S) (or P(S)):
while(1){ // each execution of the while loop is atomic
if (S>0)
S--;
break;

}

Each while loop execution and S++ are each atomic operations
— how?
2. signal(S) (or V(S)):

S++; /[atomic

| Lecture 12-5 '

Refresher - Semaphores |

 To synchronize access of multiple threads to
common data structures

« Semaphore S=1;
Allows two operations: wait and signal
1. wait(S) (or P(S)):
while(1){ // each execution of the while loop is atomic
if (S>0)
enter() S--:
break;

}

Each while loop execution and S++ are each atomic operations
— how?
2. signal(S) (or V(S)):

exit) S++: /[atomic

| Lecture 12-6 '

How are semaphores used? |

One Use: Mutual Exclusion — Bank ATM example

semaphore S=1, extern semaphore S;
ATM1: ATM2
wait(S); // enter wait(S); // enter
/[critical section // critical section
obtain bank amount; obtain bank amount;
add in deposit; add in deposit;
update bank amount; update bank amount;
signal(S); // exit signal(S); // exit

| Lecture 12-7 '

Distributed Mutual Exclusion:

Performance Evaluation Criteria

« Bandwidth: the total number of messages sent in each entry
and exit operation.

« Client delay: the delay incurred by a process at each entry
and exit operation (when no other process is in, or waiting)

(We will prefer mostly the entry operation.)

« Synchronization delay: the time interval between one
process exiting the critical section and the next process
entering it (when there is only one process waiting)

 These translate into throughput -- the rate at which the
processes can access the critical section, i.e., X processes
per second.

(these definitions more correct than the ones in the textbook)

| Lecture 12-8 .

Assumptions/System Model |

* For all the algorithms studied, we make the
following assumptions:

— Each pair of processes is connected by reliable channels
(such as TCP).

— Messages are eventually delivered to recipient in FIFO
order.

— Processes do not fail.

| Lecture 12-9 .

1. Centralized Control of Mutual Exclusion |

+*A central coordinator (master or leader)

> Is elected (which algorithm?)

» Grants permission to enter CS & keeps a queue of requests to enter the CS.
» Ensures only one process at a time can access the CS

» Has a special token message, which it can give to any process to access CS.

<& .
% Operations
**To enter a CS Send a request to the coord & wait for token.
+**On exiting the CS Send a message to the coord to release the token.

**Upon receipt of a request, if no other process has the token, the coord
replies with the token; otherwise, the coord queues the request.

**Upon receipt of a release message, the coord removes the oldest entry in the
queue (if any) and replies with a token.

** Features:

> Safety, liveness are guaranteed

» Ordering also guaranteed (what kind?)

» Requires 2 messages for entry + 1 messages for exit operation.

» Client delay: one round trip time (request + grant)

» Synchronization delay: 2 message latencies (release + grant)

» ® The coordinator becomes performance bottleneck and single point of

failure.
| Lecture 12-10 '

2. Token Ring Approach |

**Processes are organized in a logical ring: p; has a
communication channel to p.1ymod N,

**Operations:
**Only the process holding the token can enter the CS.

**To enter the critical section, wait passively for the token. When in
CS, hold on to the token and don’t release it.

**To exit the CS, send the token onto your neighbor.

** If a process does not want to enter the CS when it receives the
token, it simply forwards the token to the next neighbor.

**Features:

*»Safety & liveness are guaranteed

% Ordering is not guaranteed. |

**Bandwidth: 1 message per exit

Previous holder of token

current holder
of token

**Client delay: 0 to N message \ e
transmissions. next holder of
“*Synchronization delay between one @ token

process’s exit from the CS and the

next process’s entry is _between 1 and Lecture 12-11
N-1 message transmissions. \—_'

3. Timestamp Approach: Ricart & Agrawala |

*** Processes requiring entry to critical section multicast a request, and can
enter it only when all other processes have replied positively.

¢ Messages requesting entry are of the form <T,p.>, where T is the sender’s
timestamp (from a Lamport clock) and p; the sender’s identity (used to
break ties in T).

**To enter the CS

** set state to wanted

*** multicast “request” to all processes (including timestamp) — use R-multicast
+** wait until all processes send back “reply”
** change state to held and enter the CS

*** On receipt of arequest <T;, p;> at p;:

o if (state = held) or (state = wanted & (T, p;)<(T;,p;)), // lexicographic ordering
J J
enqueue request
* else “reply” to p,

** On exiting the CS

X change state to release and “reply” to all queued requests.

| Lecture 12-12 '

Ricart & Agrawala’s Algorithm |

On initialization
state .= RELEASED;
1o enter the section
state = WANTED;
Multicast request to all processes;
T :=request’s timestamp;

Wait until (number of replies received = (N — 1));
state .= HELD;

On receipt of a request <T, p;> at p; (i #)

if (state = HELD or (state = WANTED and (T, pj) <(T, p)))
then

queue request from p; without replying;
else

reply immediately to p;;
end if
To exit the critical section

state .= RELEASED;

reply to any queued requests;

| Lecture 12-13 '

Ricart & Agrawala’s Algorithm

41

Reply
|

| Lecture 12-14 '

Analysis: Ricart & Agrawala |

s*Safety, liveness, and ordering (causal) are
guaranteed
S*Why?
s*Bandwidth: 2(N-1) messages per entry
operation
**N-1 unicasts for the multicast request + N-1 replies

**N messages if the underlying network supports multicast
**N-1 unicast messages per exit operation
**1 multicast if the underlying network supports
multicast
**Client delay: one round-trip time

s*Synchronization delay: one message
transmission time

| Lecture 12-15 '

4. Timestamp Approach: Maekawa’s Algorithm |

X Setup

] Each process p,is associated with a voting set v, (of processes)

(1 Each process belongs to its own voting set

1 The intersection of any two voting sets is non-empty
 Each voting set is of size K

1 Each process belongs to M other voting sets
dMaekawa showed that K=M=VN works best

One way of doing this is to put N processes in a YN by YN matrix
and for each p;, v, = row + column containing p;

| Lecture 12-16 '

Maekawa Voting Set with N=4

| Lecture 12-17 '

Timestamp Approach: Maekawa’s Algorithm |

»
% Protocol
] Each process p,is associated with a voting set v, (of processes)

To access a critical section, p, requests permission from all other
processes in its own voting set v,

dVoting set member gives permission to only one requestor at a
time, and queues all other requests

dGuarantees safety
(May not guarantee liveness (may deadlock)

| Lecture 12-18 '

Maekawa’s Algorithm — Part 1 |

On initialization
state .= RELEASED;
voted := FALSE;

For p. to enter the critical section
state .= WANTED;
Multicast request to all processes in V, X{};
Wait until (number of replies received = (K X X);
state := HELD;

([On receipt of a request from p; at p; (X
if (state = HELD or voted = TRUE)
then
queue request from p; without replying;
else
send reply to p;; I
voted .= TRUE; Contl nues on
end if next slide

| Lecture 12-19 '

Maekawa’s Algorithm — Part 2 |

For p. to exit the critical section
state := RELEASED;
Multicast release to all processes in V, X {}X};

s On receipt of a release from p; at p, (DX
if (queue of requests i1s non-empty)

then
remove head of queue — from p,, say;
send reply to p,;
voted = TRUE;
else
voted := FALSE;

\ end if

| Lecture 12-20 '

Maekawa’s Algorithm — Analysis |

° 2\/N messages per entry, \/N mesSages per exit
— Better than Ricart and Agrawala’s (2(N-1) and N-1 messages)

« Client delay: One round trip time

« Synchronization delay: 2 message transmission
times

| Lecture 12-21 '

Summary |

« Mutual exclusion
— Semaphores review
— Coordinator-based token
— Token ring
— Ricart and Agrawala’s timestamp algo.
— Maekawa’s algo.

« MP2 due this Sunday midnight

— By now you should have a fully working system, and be taking
measurements

« Demos next Monday 2-6 pm
— Watch Piazza for Signup sheet

| Lecture 12-22 '

