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Why Mutual Exclusion? 

• Bank’s Servers in the Cloud: Think of two 
simultaneous deposits of $10,000 into your bank 
account, each from one ATM.  
– Both ATMs read initial amount of $1000 concurrently from the 

bank’s cloud server 

– Both ATMs add $10,000 to this amount (locally at the ATM) 

– Both write the final amount to the server 

– What’s wrong? 
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• Bank’s Servers in the Cloud: Think of two 
simultaneous deposits of $10,000 into your bank 
account, each from one ATM.  
– Both ATMs read initial amount of $1000 concurrently from the 

bank’s cloud server 

– Both ATMs add $10,000 to this amount (locally at the ATM) 

– Both write the final amount to the server 

– What’s wrong? 

 

• The ATMs need mutually exclusive access to your  
account entry at the server (or, to executing the 
code that modifies the account entry) 

 

Why Mutual Exclusion? 
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Critical section problem: Piece of code (at all 
clients) for which we need to ensure there is at 
most one client executing it at any point of time. 

 Solutions: 

 Semaphores, mutexes, etc. in single-node operating 
systems 

 Message-passing-based protocols in distributed systems: 

 enter() the critical section 

 AccessResource() in the critical section 

 exit() the critical section   

 Distributed mutual exclusion requirements: 

 Safety – At most one process may execute in CS at any time 

  Liveness – Every request for a CS is eventually granted 

  Ordering (desirable) – Requests are granted in the order 
    they were made 

Mutual Exclusion  
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Refresher - Semaphores 

• To synchronize access of multiple threads to 
common data structures 

• Semaphore S=1; 
Allows two operations: wait and signal 

1. wait(S) (or P(S)):  

  while(1){ // each execution of the while loop is atomic 

    if (S > 0) 

       S--; 

       break; 

   } 

 

Each while loop execution and S++ are each atomic operations 

–  how? 

2. signal(S) (or V(S)):  

  S++; // atomic 
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Refresher - Semaphores 

• To synchronize access of multiple threads to 
common data structures 

• Semaphore S=1; 
Allows two operations: wait and signal 

1. wait(S) (or P(S)):  

  while(1){ // each execution of the while loop is atomic 

    if (S > 0) 

       S--; 

       break; 

  } 

 

Each while loop execution and S++ are each atomic operations 

–  how? 

2. signal(S) (or V(S)):  

  S++; // atomic 

 

enter() 

exit() 
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How are semaphores used? 

semaphore S=1; 

 

ATM1: 

 wait(S); // enter 

  // critical section 

 obtain bank amount; 

 add in deposit; 

 update bank amount; 

 signal(S); // exit 

  

extern semaphore S; 

 

ATM2  

 wait(S); // enter 

  // critical section 

 obtain bank amount; 

 add in deposit; 

 update bank amount; 

 signal(S); // exit 

 

  

One Use: Mutual Exclusion – Bank ATM example 
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Distributed Mutual Exclusion: 

Performance Evaluation Criteria 

• Bandwidth: the total number of messages sent in each entry 
and exit operation. 

• Client delay: the delay incurred by a process at each entry 
and exit operation (when no other process is in, or waiting) 

  (We will prefer mostly the entry operation.) 

• Synchronization delay: the time interval between one 
process exiting the critical section and the next process 
entering it (when there is only one process waiting) 

 

• These translate into throughput -- the rate at which the 
processes can access the critical section, i.e., x processes 
per second. 

 

(these definitions more correct than the ones in the textbook) 
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Assumptions/System Model 

• For all the algorithms studied, we make the 
following assumptions: 

– Each pair of processes is connected by reliable channels 
(such as TCP).  

– Messages are eventually delivered to recipient in FIFO 
order. 

– Processes do not fail. 
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A central coordinator (master or leader) 
 Is elected (which algorithm?) 

  Grants permission to enter CS & keeps a queue of requests to enter the CS. 

  Ensures only one process at a time can access the CS 

  Has a special token message, which it can give to any process to access CS.  

 Operations 
To enter a CS Send a request to the coord & wait for token. 

On exiting the CS Send a message to the coord to release the token. 

Upon receipt of a request, if no other process has the token, the coord  
replies with the token; otherwise, the coord queues the request. 

Upon receipt of a release message, the coord removes the oldest entry in the 
queue (if any) and replies with a token. 

 Features:  
 Safety, liveness are guaranteed 

  Ordering also guaranteed (what kind?) 

  Requires 2 messages for entry + 1 messages for exit operation. 

  Client delay: one round trip time (request + grant) 

  Synchronization delay: 2 message latencies (release + grant)  

   The coordinator becomes performance bottleneck and single point of 
failure. 

1. Centralized Control of Mutual Exclusion  
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Processes are organized in a logical ring: pi has a 
communication channel to p(i+1)mod N. 

Operations: 
Only the process holding the token can enter the CS.  

To enter the critical section, wait passively for the token. When in 
CS, hold on to the token and don’t release it. 

To exit the CS, send the token onto your neighbor. 

 If a process does not want to enter the CS when it receives the 
token, it simply forwards the token to the next neighbor. 

 

2. Token Ring Approach  

P0 

P1 

P2 

P3 

PN-1 

Previous holder of token 

next holder of 
token 

current holder 
of token 

Features: 
Safety & liveness are guaranteed 

 Ordering is not guaranteed. 

Bandwidth: 1 message per exit 

Client delay: 0 to N message 
transmissions. 

Synchronization delay between one 
process’s exit from the CS and the 
next process’s entry is between 1 and 
N-1 message transmissions. 
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3. Timestamp Approach: Ricart & Agrawala  

Processes requiring entry to critical section multicast a request, and can 

enter it only when all other processes have replied positively. 

Messages requesting entry are of the form <T,pi>, where T is the sender’s 

timestamp (from a Lamport clock) and pi  the sender’s identity (used to 

break ties in T).  

To enter the CS 

 set state to wanted 

 multicast “request”  to all processes (including timestamp) – use R-multicast 

 wait until all processes send back “reply” 

 change state to held and enter the CS 

 On receipt of a request <Ti, pi> at pj: 

 if (state = held) or (state = wanted & (Tj, pj)<(Ti,pi)), // lexicographic ordering 

       enqueue request 

 else “reply” to pi 

 On exiting the CS  

 change state to release and “reply” to all queued requests. 
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Ricart & Agrawala’s Algorithm  

On initialization 
 state := RELEASED;  
To enter the section 
 state := WANTED; 
 Multicast request to all processes;  request processing deferred here 
 T := request’s timestamp; 
 Wait until (number of replies received = (N – 1)); 
 state := HELD; 
 
On receipt of a request <Ti, pi> at pj (i ≠ j) 
 if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi))) 
 then  
  queue request from pi without replying;  
 else  
  reply immediately to pi; 
 end if 
To exit the critical section 
 state := RELEASED; 
 reply to any queued requests; 



Lecture 12-14 

Ricart & Agrawala’s Algorithm  
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Analysis: Ricart & Agrawala  

Safety, liveness, and ordering (causal) are 

guaranteed 

Why? 

Bandwidth: 2(N-1) messages per entry 

operation 

N-1 unicasts for the multicast request + N-1 replies 

N messages if the underlying network supports multicast 

N-1 unicast messages per exit operation  

1 multicast if the underlying network supports 

multicast 

Client delay: one round-trip time 

Synchronization delay: one message 

transmission time 
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4. Timestamp Approach: Maekawa’s Algorithm  

 Setup 

 Each process pi is associated with a voting set vi (of processes) 

 Each process belongs to its own voting set 

 The intersection of any two voting sets is non-empty 

 Each voting set is of size K 

 Each process belongs to M other voting sets 

Maekawa showed that K=M=N works best 

   One way of doing this is to put N processes in a N by N  matrix 

and for each pi, vi = row + column containing pi 
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Maekawa Voting Set with N=4 

p1 p2 

p3 p4 

p1’s voting set = v1 
v2 

v3 v4 

p1  p2 
p3  p4 
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Timestamp Approach: Maekawa’s Algorithm  

 Protocol 

 Each process pi is associated with a voting set vi (of processes) 

To access a critical section, pi requests permission from all other 

processes in its own voting set vi  

Voting set member gives permission to only one requestor at a 

time, and queues all other requests 

Guarantees safety  

May not guarantee liveness (may deadlock) 
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Maekawa’s Algorithm – Part 1 

On initialization 

 state := RELEASED; 

 voted := FALSE; 

For pi to enter the critical section 

 state := WANTED; 

 Multicast request to all processes in Vi – {pi}; 

 Wait until (number of replies received = (K – 1)); 

 state := HELD; 

On receipt of a request from pi at pj (i ≠ j) 

 if (state = HELD or voted = TRUE) 

 then  

  queue request from pi without replying;  

 else  

  send reply to pi; 

  voted := TRUE; 

 end if 

 

Continues on 

next slide 

X X 
X X 

X X 
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Maekawa’s Algorithm – Part 2 

For pi to exit the critical section 

 state := RELEASED; 

 Multicast release to all processes in Vi – {pi}; 

On receipt of a release from pi at pj (i ≠ j) 

 if (queue of requests is non-empty) 

 then  

  remove head of queue – from pk, say;  

  send reply to pk; 

  voted := TRUE; 

 else  

  voted := FALSE; 

 end if 

 

X X 
X X 
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Maekawa’s Algorithm – Analysis 

• 2N messages per entry, N messages per exit 
– Better than Ricart and Agrawala’s (2(N-1) and N-1 messages) 

• Client delay: One round trip time 

• Synchronization delay: 2 message transmission 
times 
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Summary 

• Mutual exclusion 
– Semaphores review 

– Coordinator-based token 

– Token ring 

– Ricart and Agrawala’s timestamp algo. 

– Maekawa’s algo. 

 

• MP2 due this Sunday midnight 
– By now you should have a fully working system, and be taking 

measurements 

• Demos next Monday 2-6 pm 
– Watch Piazza for Signup sheet 

 

  


