
Lecture 16
self-stabilization

distributed systems
CS425 / ECE 428 / CSE 424

sayan mitra

motivation

• as the number of computing elements increase in
distributed systems failures become more common

• fault tolerance should be automatic, without external
intervention

• two kinds of fault tolerance

– masking: application layer does not see faults, e.g.,
redundancy and replication

– non-masking: system deviates, deviation is detected
and then corrected: e.g., roll back and recovery

• self-stabilization is a general technique for non-masking
FT distributed systems

self-stabilization

• technique for spontaneous

healing

• guarantees eventual safety

following failures

 feasibility demonstrated by

Dijkstra (CACM `74)

E. Dijkstra

self-stabilizing systems

 recover from any initial configuration to a

legitimate configuration in a bounded

number of steps, as long as the codes are not

corrupted

 assumption:

 failures affect the state (and data) but not the

 the program

self-stabilizing systems

• self-stabilizing systems

exhibits non-masking

fault-tolerance

• they satisfy the

following two criteria

– convergence

– closure

Not L L

convergence

closure

fault

self-stabilizing systems

transient failures perturb the global state. The ability

to spontaneously recover from any initial state

implies that no initialization is ever required.

such systems can be deployed ad hoc, and are

guaranteed to function properly in bounded time

guarantees fault tolerance when the mean time

between failures (MTBF) >> mean time to recovery

(MTTR)

Outline

• Mutual exclusion on
the ring

• Graph coloring

• Spanning tree

MUTUAL EXCLUSION ON
THE RING

example 1:
stabilizing mutual exclusion in

unidirectional ring

0
1 6 2 4

7
5 3

N-1

consider a unidirectional ring of processes.

Legal configuration = exactly one token in the ring

desired “normal” behavior: single token circulates in the ring

Dijkstra’s stabilizing mutual
exclusion

0

p0 if x[0] = x[N-1] then x[0] := x[0] + 1

pj j > 0 if x[j] ≠ x[j -1] then x[j] := x[j-1]

N processes: 0, 1, …, N-1

state of process j is x[j]  {0, 1, 2, K-1}, where K > N

(TOKEN = if condition is true)

Legal configuration: only one process has token

start the system from an arbitrary initial configuration

example execution

0

0

0

0

0

0 1

0

0

0

0

0 1

1

0

0

0

0

1

1

1

1

1

1 2

1

1

1

1

1 K-1

K-1

K-1

K-1

K-1

K-1

example stabilizing execution

0

1

0

1

4

0 0

0

0

1

4

0 0

0

4

1

4

0

0

0

4

0

4

0 0

0

4 0

0

0

0

0

0

0

0

0

why does it work ?

1. at any configuration, at least one process
can make a move (has token)

– suppose p1,…,pN-1 cannot make a move

– then x[N-1] = x[N-2+ = … x*0+

– then p0 can make a move

why does it work ?

1. at any configuration, at least one process can
make a move (has token)

2. set of legal configurations is closed under all
moves

– if only p0 can make a move then for all i,j x[i] = x[j]
and after p0’s move, only p1 can make a move

– if only pi (i≠0) can make a move
• for all j < i, x[j] = x[i-1]

• for all k ≥ i, x*k+ = x*i+, and

• x[i-1+ ≠ x*i+

in this case, after pi‘s moves only pi+1 can move

why does it work ?

1. at any configuration, at least one process
can make a move (has token)

2. set of legal configurations is closed under
all moves

3. total number of possible moves from
(successive configurations) never
increases

– any move by pi either enables a move for pi+1
or none at all

why does it work ?

1. at any configuration, at least one process can make a move (has
token)

2. set of legal configurations is closed under all moves

3. total number of possible moves from (successive configurations)
never increases

4. all illegal configuration C converges to a legal
configuration in a finite number of moves
– there must be a value, say v, that does not appear in C

– except for p0, none of the processes create new values

– p0 takes infinitely many steps, and therefore, eventually sets
x[0] = v

– all other processes copy value v and a legal configuration is
reached in N-1 steps

putting it all together

• Legal configuration = a
configuration with a single
token

• perturbations or failures take
the system to configurations
with multiple tokens
– e.g. mutual exclusion property

may be violated

• within finite number of
steps, if no further failures
occur, then the system
returns to a legal
configuration

Not L L

convergence

closure

fault

mutual exclusion in bidirectional ring

p0 pN-1 if exists neighbor j: x[j] = x[i] mod 4

 then x[i] := x[i] + 1 mod 2

pj 0<j<N-1 if exists neighbor j: x[j] = x[i] mod 4

 then x[i] := x[j]

N processes: 0, 1, …, N-1

state of process j, j > 0 and j < N-1 is x[j]  {0, 1, 2, 3}

state of process 0, x[0]  {1, 3}

state of process N-1, x[N-1]  {0, 2}

neighbor of i = {i-1 mod N, i + 1 mod N}

Exercise: show that this 4 state protocol stabilizes to a legal state in a

finite number of steps.

GRAPH COLORING

stabilizing graph coloring

• a graph coloring algorithm

• self-stabilizing graph coloring

graph coloring problem

• shared memory distributed system with N
processes p0, …, pN-1

– induced undirected graph G = (V,E)

– Ni: set of neighbors of pi

– |Ni| ≤ D, maximum degree of any node D

– set of all colors C, |C| = D + 1

• initially nodes are assigned arbitrary colors

• design an algorithm such that for all i, j

– if j  Ni then colori ≠ colorj

• application: choosing broadcast frequencies in a
wireless network in order to reduce interference

simple coloring algorithm

• program for process pi

– NC = {c  C | exists j  Ni , colorj = c}

– if there exists j  Ni such that colori = colorj

 then colori := choose from C \ NC

• shared memory program: pi can read colorj,
j  Ni and set colori in a single atomic step

correctness of simple coloring (SC)

• each action resolves the
color of a node w.r.t. its
neighbors

• once a node gets a distinct
color, it never changes its
color

• each node changes color
at most once, algorithm
terminates after N-1 steps

properties of SC

• Legal configuration = for all i, j, if j  Ni then
colori ≠ colorj

• is SC self-stabilizing?

– YES, does not require any initialization

– from any initial coloring converges to a legal
configuration, i.e., with correct coloring, in N-
1 steps

• requires D+1 colors!
– very suboptimal

“Four colors suffice”

• any planar graph can be colored with
4 colors!

• any 2D map can be colored with 4
colors

• this is the (famous) 4 color theorem

• proposed in 1852 when Francis
Guthrie (to De Morgan), while trying
to color the map of counties
of England

Kenneth Appel and Wolfgang
Haken (at UIUC!) announced
to much acclaim that they had
proven the four color theorem

their proof reduced the
infinitude of possible maps to
1,936 reducible configurations
which had to be checked one
by one by computer and took >
1000 hours

planar graph coloring

• with at most 6 colors

• key idea:

– transform G to a directed acyclic graph (DAG)
for which the degree of any node is at most 5

– execute simple coloring algorithm on DAG

DAG generating algorithm
• process pi

– integer variable xi
• i  j iff xi < xj or xi = xj and i < j

• i  j otherwise

• xi’s induce a directed acyclic graph (DAG)

– succ(i) = { j | there exists directed edge (i,j) }

– sxi = {xj | j  succ(i)}

• how to ensure that the number of outgoing
edges for every i is at most 5?

• program for pi

– if |succ(i)| > 5 then xi = max {sxi} + 1

• again, assuming large grain atomicity

example execution

3 1

6

0

2 5

4

3

5 2 5

6

5 4
3 1

6

0

2 5

4

3

5 7
5

6

5 4

correctness of DAG generation

Legal configuration = for all i, outdegree(i) ≤ 5

– in any planar graph |V| > 2 implies

 |E| ≤ 3|V| - 6 (Euler’s formula)

– Corollary 1. in any planar graph there is at
least one node with degree ≤ 5

correctness of DAG generation

Legal configuration = for all i, outdegree(i) ≤ 5

DAG generation stabilizes in finite number of steps

• assume that the algorithm does not terminate

• there is at least one j that makes infinitely many moves

• in every move, j makes all edges point inward

• so, between two successive moves of j, 6 other nodes in
succ(j) must be moving

– at least 6 nodes in succ(j) will make infinitely many
moves

– so, there exists a subgraph in which every node has
degree > 5 and in which nodes move infinitely

• subgraph is also a planar graph, contradicts Corollary 1.

stack of stabilizing protocols

• DAG generation
stabilizes in finite
number of steps

• if DAG is stable then
SC stabilizes in a
finite number of steps

• thus, overall coloring
stabilizes in a finite
number of steps

algorithm 1
stabilizes to L1 in time T1

algorithm 2 (starting from L1)
stabilizes to L2 in time T2

algorithm 3 (starting from L2)
stabilizes to L3 in time T3

self-stabilizing spanning tree

assumptions

• topology is a connected graph G=(V,E)

• failures add and remove edges and vertices
without disconnecting G

• failures also corrupt software state (as
usual)

• let n = |V|

• shared memory

algorithm for spanning tree

• process pi

• state variables
– parent[i]: parent pointer

– L[i]: level

– N[i]:set of neighbors of i

• there is a distinguished root process
r (always idle)

• Legal configuration:
– L[r] = 0, parent[r] is undefined

– for all i, i ≠ r ::

• L[i] < n and

• L[parent[i]] < n -1 and

• L[i] = L[parent[i]] + 1

0

1 1

2 2 2

an illegal configuration

0

1

2

5

4

3

0

1

2

5

4

3

1

2

3 4

5

Parent[2] is corrupted

algorithm

process pi

if (L[i] ≠ n)  (L[i] ≠ L[parent[i]] +1)  (L[parent[i]] ≠ n)

 then L[i] :=L[parent[i]] +1 (0)

if (L[i]  n)  (L[parent[i]] =n)

 then L[i]:=n (1)

if (L[i] =n)  (k  N[i]:L[k] < n-1)

 then L[i] :=L[k]+1; parent[i]:=k (2)

stabilizing execution
0

1

1 2

2 2

0

1

1 2

3 2

0

0

1

1 2

3 4

0 0

0

1

5 6

3 4

1,1,1

0

1

6 6

6 6

2

0

1

6 2

6 6

2

0

1

6 2

3 6

2

0

1

3 2

3 6

2

0

1

3 2

3 4

proof of stabilization
•define an edge from i to parent[i] to be well-formed, when

•L[i] ≠ n, L[parent[i]] ≠ n and L[i] = L[parent[i]] +1

•in any configuration, the well-formed edges form a spanning forest

•delete all edges that are not well-formed

•designate each tree T(k) in the forest by the lowest value of L in it

0

1

2

5

4

3

Parent[2] is corrupted

 T(0) = {0, 1}

 T(2) = {2, 3, 4, 5}

 Let F(k) denote the number of T(k) in the forest.

 Define a tuple F= (F(0), F(1), F(2) …, F(n)).

 For the sample graph, F = (1, 0, 1, 0, 0, 0) after

 node 2 has a transient failure.

skeleton of the proof

Minimum F = (1,0,0,0,0,0) {legal configuration}

Maximum F = (1, n-1, 0, 0, 0, 0).

With each action of the algorithm, F decreases

lexicographically. Verify the claim!

This proves that eventually F becomes (1,0,0,0,0,0) and

the spanning tree stabilizes.

What is the time complexity of this algorithm?

stabilizing execution
0

1

1 2

2 2

0

1

1 2

3 2

0

0

1

1 2

3 4

0 0

0

1

5 6

3 4

1,1,1

0

1

6 6

6 6

2

0

1

6 2

6 6

2

0

1

6 2

3 6

2

0

1

3 2

3 6

2

0

1

3 2

3 4

1,1,2,0,0,0,0 1,1,1,0,0,0,0 1,1,0,0,0,0,0 1,0,0,1,0,1,0 1,0,0,0,0,0,4

1,0,0,0,0,0,3 1,0,0,0,0,0,2 1,0,0,0,0,0,1 1,0,0,0,0,0,0

other stabilizing algorithms

• see handout for a stabilizing algorithm for

– distributed reset

– stabilizing clock synchronization

summary

• self-stabilizing algorithms recover automatically to legal
configurations after faults cease in a finite number of
steps

– assuming the program does not get corrupted

• should have two key properties

– closure

– Convergence

• permit compositional reasoning

• typically they maintain little state information

• examples: mutual exclusion, coloring, DAG formation,
more next lecture

