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motivation 

• as the number of computing elements increase in 
distributed systems failures become more common 

• fault tolerance should be automatic, without external 
intervention 

• two kinds of fault tolerance 

– masking: application layer does not see faults, e.g., 
redundancy and replication 

– non-masking: system deviates, deviation is detected 
and then corrected: e.g., roll back and recovery 

• self-stabilization is a general technique for non-masking 
FT distributed systems 



self-stabilization 

• technique for spontaneous 

healing 

• guarantees eventual safety 

following failures 

 

 feasibility demonstrated by 

Dijkstra (CACM `74) 

E. Dijkstra 



self-stabilizing systems 

 recover from any initial configuration to a 

legitimate configuration in a bounded 

number of steps, as long as the codes are not 

corrupted 

 assumption: 

 failures affect the state (and data) but not the  

 the program 

 

    



self-stabilizing systems 

• self-stabilizing systems 

exhibits non-masking 

fault-tolerance 

• they satisfy the 

following two criteria 

– convergence 

– closure 

Not L L 

convergence 

closure 

fault 



self-stabilizing systems 

transient failures perturb the global state. The ability 

to spontaneously recover from any initial state 

implies that no initialization is ever required. 

 

such systems can be deployed ad hoc, and are 

guaranteed to function properly in bounded time 

 

guarantees fault tolerance when the mean time 

between failures (MTBF) >> mean time to recovery 

(MTTR) 



Outline 

• Mutual exclusion on 
the ring 

• Graph coloring 

• Spanning tree 



MUTUAL EXCLUSION ON 
THE RING 



example 1:  
stabilizing mutual exclusion in 

unidirectional ring 
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consider a unidirectional ring of processes.  

Legal configuration = exactly one token in the ring 

desired “normal” behavior: single token circulates in the ring 



Dijkstra’s stabilizing mutual 
exclusion 

0 

p0 if x[0] = x[N-1] then x[0] := x[0] + 1  

pj  j > 0  if x[j] ≠ x[j -1] then x[j] := x[j-1]  

N processes: 0, 1, …, N-1 

state of process j is x[j]  {0, 1, 2, K-1}, where K > N 

(TOKEN = if condition is true) 

Legal configuration: only one process has token 

start the system from an arbitrary initial configuration  



example execution 
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example stabilizing execution 
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why does it work ? 

1. at any configuration, at least one process 
can make a move (has token) 

– suppose p1,…,pN-1 cannot make a move 

– then x[N-1] = x[N-2+ = … x*0+ 

– then p0 can make a move 



why does it work ? 

1. at any configuration, at least one process can 
make a move (has token) 

2. set of legal configurations is closed under all 
moves 

– if only p0 can make a move then for all i,j x[i] = x[j] 
and after p0’s move, only p1 can make a move 

– if only pi (i≠0) can make a move 
• for all j < i, x[j] = x[i-1] 

• for all k ≥ i, x*k+ = x*i+, and 

• x[i-1+ ≠ x*i+ 

in this case, after pi‘s moves only pi+1 can move 



why does it work ? 

1. at any configuration, at least one process 
can make a move (has token) 

2. set of legal configurations is closed under 
all moves 

3. total number of possible moves from 
(successive configurations) never 
increases 

– any move by pi either enables a move for pi+1 
or none at all 



why does it work ? 

1. at any configuration, at least one process can make a move (has 
token) 

2. set of legal configurations is closed under all moves 

3. total number of possible moves from (successive configurations) 
never increases 

4. all illegal configuration C converges to a legal 
configuration in a finite number of moves 
– there must be a value, say v, that does not appear in C 

– except for p0, none of the processes create new values 

– p0 takes infinitely many steps, and therefore, eventually sets 
x[0] = v 

– all other processes copy value v and a legal configuration is 
reached in N-1 steps 

 



putting it all together 

• Legal configuration = a 
configuration with a single 
token 

• perturbations or failures take 
the system to configurations 
with multiple tokens 
– e.g. mutual exclusion property 

may be violated 

• within finite number of 
steps, if no further failures 
occur, then the system 
returns to a legal 
configuration 
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mutual exclusion in bidirectional ring 

p0 pN-1  if exists neighbor j: x[j] = x[i] mod 4  

   then x[i] := x[i] + 1 mod 2 

pj  0<j<N-1  if exists neighbor j: x[j] = x[i] mod 4  

   then x[i] := x[j]  

N processes: 0, 1, …, N-1 

state of process j, j > 0 and j < N-1 is x[j]  {0, 1, 2, 3} 

state of process 0, x[0]  {1, 3} 

state of process N-1, x[N-1]  {0, 2} 

neighbor of i = {i-1 mod N, i + 1 mod N} 

Exercise: show that this 4 state protocol stabilizes to a legal state in a 

finite number of steps. 



GRAPH COLORING 



stabilizing graph coloring 

• a graph coloring algorithm 

• self-stabilizing graph coloring 



graph coloring problem 

• shared memory distributed system with N 
processes p0, …, pN-1 

– induced undirected graph G = (V,E) 

– Ni: set of neighbors of pi 

– |Ni| ≤ D, maximum degree of any node D 

– set of all colors C, |C| =  D + 1 

• initially nodes are assigned arbitrary colors 

• design an algorithm such that for all i, j  

– if j  Ni then colori ≠ colorj 

• application: choosing broadcast frequencies in a 
wireless network in order to reduce interference 

 

 

 



simple coloring algorithm 

• program for process pi 

– NC = {c  C | exists j  Ni , colorj = c} 

– if there exists j  Ni such that colori = colorj 

   then colori := choose from C \ NC 

 

• shared memory program: pi can read colorj, 
j  Ni and set colori in a single atomic step 



correctness of simple coloring (SC) 

• each action resolves the 
color of a node w.r.t. its 
neighbors 

• once a node gets a distinct 
color, it never changes its 
color 

• each node changes color 
at most once, algorithm 
terminates after N-1 steps 

 



properties of SC 

• Legal configuration = for all i, j, if j  Ni then 
colori ≠ colorj 

• is SC self-stabilizing? 

– YES, does not require any initialization 

– from any initial coloring converges to a legal 
configuration, i.e., with correct coloring, in N-
1 steps 

 

• requires D+1 colors! 
– very suboptimal 

 



“Four colors suffice” 

• any planar graph can be colored with 
4 colors! 

• any 2D map can be colored with 4 
colors 

• this is the (famous) 4 color theorem 

• proposed in 1852 when Francis 
Guthrie (to De Morgan), while trying 
to color the map of counties 
of England 

Kenneth Appel and Wolfgang 
Haken (at UIUC!) announced 
to much acclaim that they had 
proven the four color theorem  
 
their proof reduced the 
infinitude of possible maps to 
1,936 reducible configurations 
which had to be checked one 
by one by computer and took > 
1000 hours 

 



planar graph coloring 

• with at most 6 colors 

• key idea: 

– transform G to a directed acyclic graph (DAG) 
for which the degree of any node is at most 5 

– execute simple coloring algorithm on DAG 

 

 



DAG generating algorithm 
• process pi 

– integer variable xi  
• i  j iff xi < xj or xi = xj and i < j  

• i  j otherwise 

• xi’s induce a directed acyclic graph (DAG) 

– succ(i) = { j | there exists directed edge (i,j) } 

– sxi = {xj | j  succ(i)} 

• how to ensure that the number of outgoing 
edges for every i is at most 5? 

• program for pi 

– if |succ(i)| > 5 then xi = max {sxi} + 1 

• again, assuming large grain atomicity 



example execution 
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correctness of DAG generation 

Legal configuration = for all i, outdegree(i) ≤ 5 

 

– in any planar graph |V| > 2 implies  

 |E| ≤ 3|V| - 6 (Euler’s formula) 

– Corollary 1. in any planar graph there is at 
least one node with degree ≤ 5 

 



correctness of DAG generation 

Legal configuration = for all i, outdegree(i) ≤ 5 

DAG generation stabilizes in finite number of steps 

• assume that the algorithm does not terminate 

• there is at least one j that makes infinitely many moves 

• in every move, j makes all edges point inward 

• so, between two successive moves of j, 6 other nodes in 
succ(j) must be moving 

– at least 6 nodes in succ(j) will make infinitely many 
moves  

– so, there exists a subgraph in which every node has 
degree > 5 and in which nodes move infinitely 

• subgraph is also a planar graph, contradicts Corollary 1. 



stack of stabilizing protocols 

• DAG generation 
stabilizes in finite 
number of steps 

• if DAG is stable then 
SC stabilizes in a 
finite number of steps 

• thus, overall coloring 
stabilizes in a finite 
number of steps 

algorithm 1 
stabilizes to L1 in time T1 

algorithm 2 (starting from L1) 
stabilizes to L2 in time T2 

algorithm 3 (starting from L2) 
stabilizes to L3 in time T3 



self-stabilizing spanning tree 



assumptions 

• topology is a connected graph G=(V,E) 

• failures add and remove edges and vertices 
without disconnecting G 

• failures also corrupt software state (as 
usual) 

• let n = |V| 

• shared memory 

 



algorithm for spanning tree 

• process pi 

• state variables 
– parent[i]: parent pointer 

– L[i]: level 

– N[i]:set of neighbors of i 

• there is a distinguished root process 
r (always idle) 

• Legal configuration: 
– L[r] = 0, parent[r] is undefined 

– for all i, i ≠ r ::  

• L[i] < n and  

• L[parent[i]] < n -1 and  

• L[i] = L[parent[i]] + 1 

0 
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an illegal configuration 
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algorithm 

     

     

process pi  

if (L[i] ≠ n)  (L[i] ≠ L[parent[i]] +1)  (L[parent[i]] ≠ n)  

 then L[i] :=L[parent[i]] +1     (0) 

if (L[i]  n)  (L[parent[i]] =n)  

 then L[i]:=n       (1) 

if (L[i] =n)  (k  N[i]:L[k] < n-1) 

 then L[i] :=L[k]+1; parent[i]:=k    (2) 



stabilizing execution 
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proof of stabilization 
•define an edge from i to parent[i] to be well-formed, when  

•L[i] ≠ n, L[parent[i]] ≠ n and L[i] = L[parent[i]] +1 

•in any configuration, the well-formed edges form a spanning forest 

•delete all edges that are not well-formed 

•designate each tree T(k) in the forest by the lowest value of L in it 
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Parent[2] is corrupted 

 T(0) = {0, 1} 

 T(2) = {2, 3, 4, 5} 

 Let F(k) denote the number of T(k) in the forest. 

 Define a tuple  F= (F(0), F(1), F(2) …, F(n)).  

 For the sample graph, F = (1, 0, 1, 0, 0, 0) after 

 node 2 has a transient failure. 



skeleton of the proof 

Minimum F = (1,0,0,0,0,0) {legal configuration} 

Maximum F = (1, n-1, 0, 0, 0, 0). 

With each action of the algorithm, F decreases 

lexicographically. Verify the claim! 

This proves that eventually F becomes (1,0,0,0,0,0) and 

the spanning tree stabilizes. 

What is the time complexity of this algorithm? 



stabilizing execution 
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other stabilizing algorithms 

• see handout for a stabilizing algorithm for 

– distributed reset 

– stabilizing clock synchronization 



summary 

• self-stabilizing algorithms recover automatically to legal 
configurations after faults cease in a finite number of 
steps 

– assuming the program does not get corrupted 

• should have two key properties 

– closure 

– Convergence 

• permit compositional reasoning 

• typically they maintain little state information 

• examples: mutual exclusion, coloring, DAG formation, 
more next lecture 


