Computer Science 425 Distributed Systems (Fall 2009)

Lecture 10

The Consensus Problem

Part of Section 12.5 and

Paper: "Impossibility of Distributed Consensus with One Faulty Process" Fisher, Lynch, Paterson, JACM, 1985 (Sections 1-3)

Acknowledgement

- The slides during this semester are based on ideas and material from the following sources:
 - Slides prepared by Professors M. Harandi, J.
 Hou, I. Gupta, N. Vaidya, Y-Ch. Hu, S. Mitra.
 - Slides from Professor S. Gosh's course at University o Iowa.

Administrative

- MP1 posted September 8, Tuesday
 - Deadline, September 25 (Friday), 4-6pm
 Demonstrations
 - Readme Files Due on September 28 (Monday)
 - Email readme documentation of your MP1 to TA
- HW 2 posted September 22, Tuesday
 - Deadline, October 6 (Tuesday), 2pm (at the beginning of the class)
- HW1 grading scale and histogram posted

Give it a thought

Have you ever wondered why vendors of (distributed) software solutions always only offer solutions that promise five-9's reliability, seven-9's reliability, but never 100% reliability?

Give it a thought

Have you ever wondered why software vendors always only offer solutions that promise five-9's reliability, seven-9's reliability, but never 100% reliability?

The fault does not lie with Microsoft Corp. or Apple Inc. or Cisco

The fault lies in the *impossibility of consensus*

What is Consensus?

- N processes
- Each process p has
 - input variable $x_p(v)$: initially either **0** or **1**
 - output variable $y_p(d)$: initially **b** (**b**=undecided)
 - v single value for process p; d decision value
- A process **is non-faulty** in a run provided that it takes infinitely many steps, and it is faulty otherwise
- Consensus problem: design a protocol so that either
 - 1. all non-faulty processes set their output variables to 0
 - 2. all non-faulty processes set their output variables to 1
 - 3. There is at least one initial state that leads to each outcomes 1 and 2 above

Canonical Application

- A set of servers implement a distributed database
 - Subset of servers participate in a particular transaction
 - Some of the servers may fail
 - Remaining servers must agree on whether to install the results of the transaction to the database or discard them

Solve Consensus!

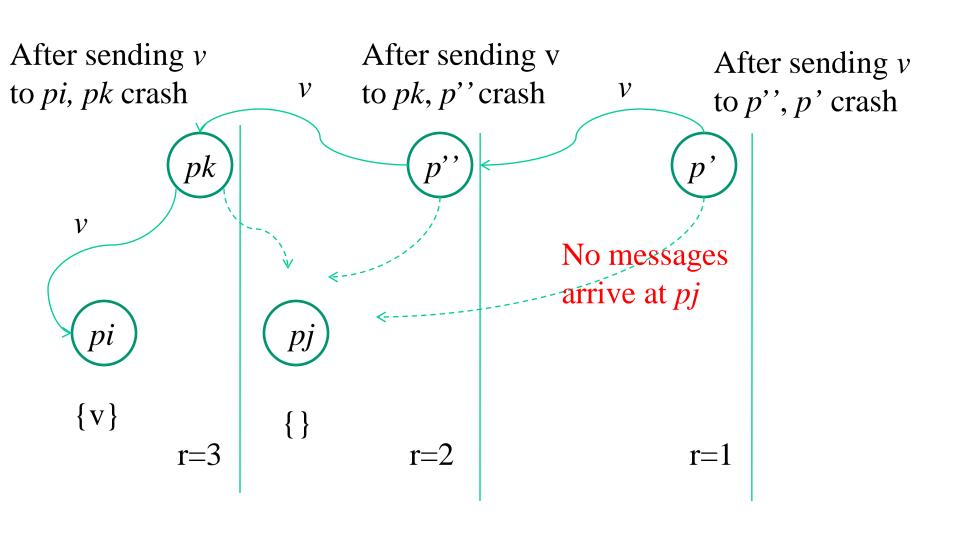
- Uh, what's the **model**? (assumptions!)
- Assumptions:
 - Processes fail only by *crash-stop*ping
 - Delivery channel is reliable
- Synchronous system: bounds on
 - Message delays
 - Max time for each process stepe.g., multiprocessor (common clock across processors)
- Asynchronous system: no such bounds!
 e.g., The Internet! The Web!

Consensus in Synchronous Systems (Dolev&Strong)

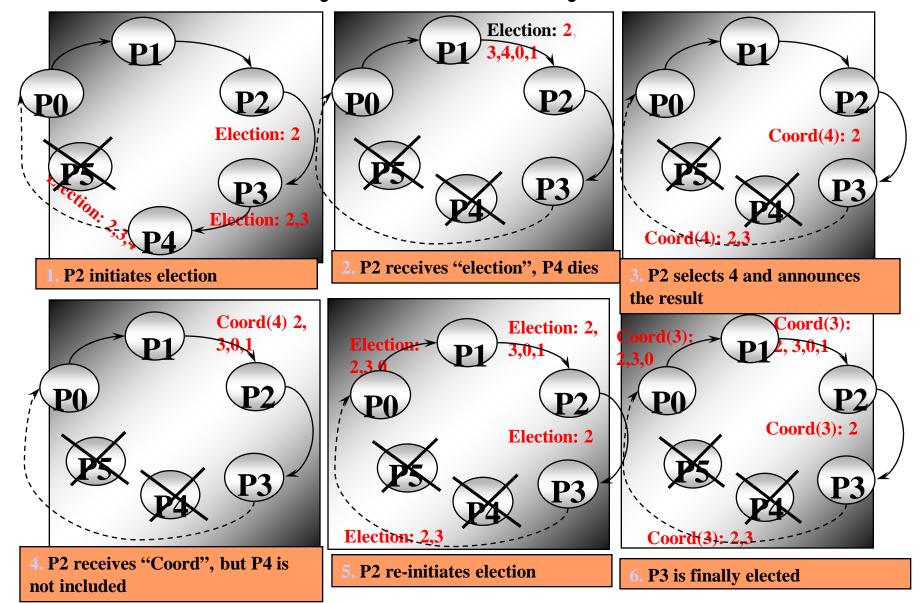
- For a system with at most f processes crashing, the algorithm proceeds in f+1 rounds (with timeout), using basic multicast (B-multicast).
- $Values^r_i$: the set of proposed values known to process $p=P_i$ at the beginning of round r.

```
- Initially Values^{0}_{i} = \{\}; Values^{1}_{i} = \{v_{i} = xp\}
   for round r = 1 to f+1 do
         B-multicast (g, Values r_i)
          Values_{i}^{r+1} \leftarrow Values_{i}^{r}
         on B-deliver(V_i) from some process p_i
          Values_{i}^{r+1} = Values_{i}^{r+1} \cup V_{i}
         end
   end
  yp=d_i = \min(Values^{f+1})
```

Why does the algorithm work? (Proof by contradiction)



Example of Consensus: Modified Ring Election for Synchronous Systems



Consensus in Asynchronous Systems

Consensus in an Asynchronous System

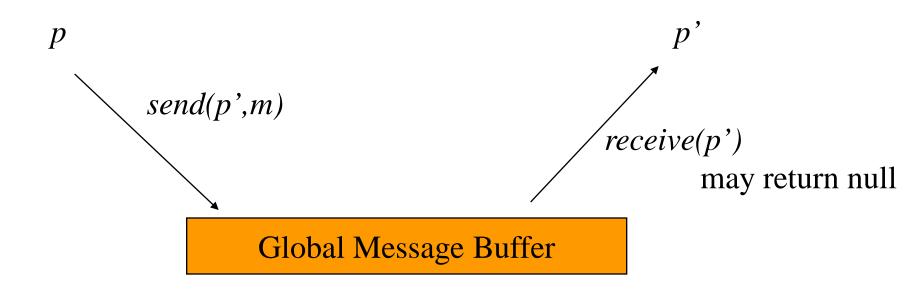
- Messages have arbitrary delay, processes arbitrarily slow (no timeouts!)
- Hence, Consensus is Impossible to achieve!
 - even a <u>single failed process</u> is enough to avoid the system from reaching agreement!
- Impossibility Applies to *any* protocol that claims to solve consensus!
- Proved in a now-famous result by Fischer, Lynch and Patterson, 1983 (FLP)
 - Stopped many distributed system designers dead in their tracks
 - A lot of claims of "reliability" vanished overnight

Recall

- Each process p has an internal state
 - program counter, registers, stack, local variables
 - input register x_p : initially either **0** or **1**
 - output register y_p : initially **b** (**b**=undecided)
- Consensus Problem: design a protocol so that either
 - 1. all non-faulty processes set their output variables to **0**
 - 2. all non-faulty processes set their output variables to 1
 - 3. (No trivial solutions allowed)

Goal: Show Impossibility of Consensus!

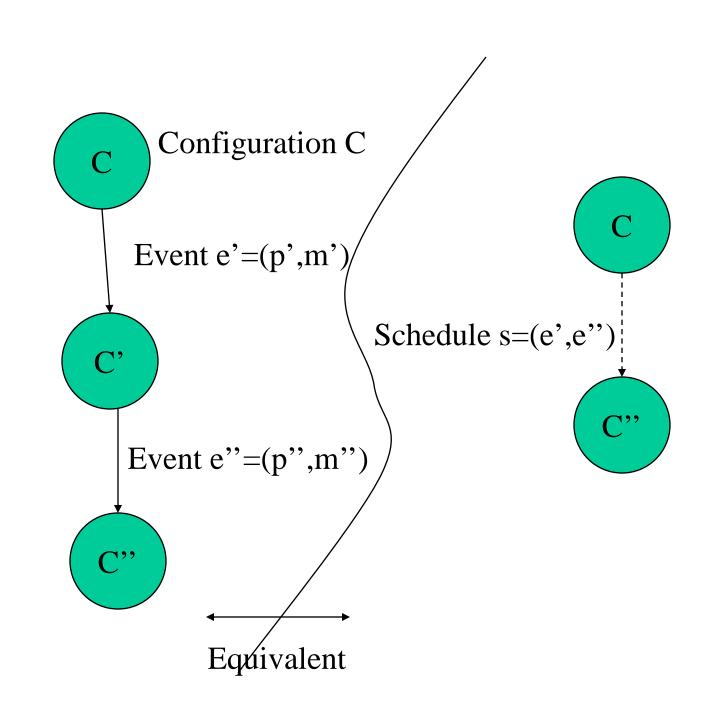
Definitions



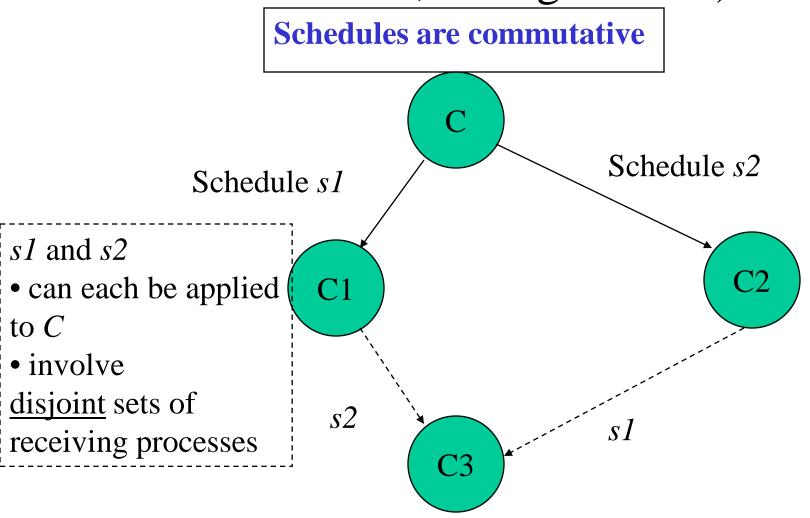
"Network"

Definitions

- Internal State of a process p
- Configuration C: = Collection of Internal States of each Process
 + content of global message buffer
 - Initial configuration:= configuration in which each process starts at an initial state and message buffer is empty
- Each Event e=(p, m) consists of
 - receipt of a message m by a process p and
 - processing of message m, and
 - sending out of all necessary messages by p (into the global message buffer)
 - e(C) = resulting configuration after event e, starting from configuration C;
 - Note: this event is different from the Lamport events
- Schedule s: sequence of events
 - e.g., s=(e, e') sequence of two events e and e'.
 - If s is finite, then s(C), the resulting configuration, is said to be **reachable** from C.
 - A configuration reachable from some initial configuration is called accessible.
 - Run: schedule applied to a configuration



Lemma 1(show properties about events, schedules, configurations)



Easier Consensus Problem

- Easier Consensus Problem: some process eventually sets y_p to be $\mathbf{0}$ or $\mathbf{1}$
- Only one process crashes we're free to choose which one
- Consensus Protocol is partially correct if it satisfies two conditions
- 1. No accessible configuration (config. reachable from an initial config.) has more than one decision value
- 2. For each *v* in {0,1}, some accessible configuration (reachable from some initial state) has decision value *v*
 - avoids trivial solution to the consensus problem
- Total correctness: partial correct with 1 failure + all admissible runs are deciding runs

Main Goal: Show "No Consensus Protocol is totally correct in spite of one fault"

- Proof: By Contradiction (in two steps)
- Outline of the Proof:
 - Assume that **P** is a consensus protocol that is totally correct despite of one fault
 - Then show circumstances under which the protocol remains forever indecisive (i.e., has output value {b})
 - We will prove the impossibility result in two steps:
 - 1. Step: Argue that there **exists initial configuration** in which the decision is not already predetermined
 - 2. Step: Construct an admissible run that avoids ever taking a step that would commit the system to particular decision

Valency Definition

- Let configuration C have a set of decision values V reachable from it
 - -C is called bivalent if |V| = 2
 - C is called univalent if |V| = 1;
 - i.e., configuration C is said to be either 0-valent or 1-valent

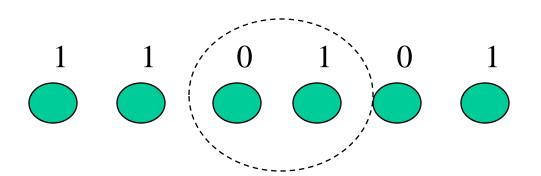
Bivalent means outcome is unpredictable

What we will show

- 1. There exists an initial configuration that is bivalent (Lemma 2)
- 2. Starting from a bivalent configuration, there is always another bivalent configuration that is reachable (Lemma 3)

Some initial configuration is bivalent

- •Proof: By Contradiction
- •Suppose all initial configurations were predetermined either 0-valent or 1-valent.
- •Place all initial configurations side-by-side, where **adjacent configurations** differ in initial x_p value for *exactly one* process.

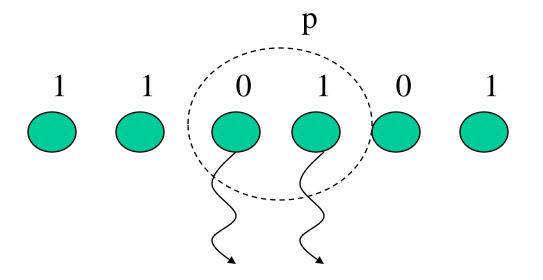


Definition: Two initial configurations are **adjacent** if they differ in the init value x_p of a single process p.

•There *has* to be **some** adjacent pair of 1-valent and 0-valent configurations

Some initial configuration is bivalent

- •There has to be **some** adjacent pair of 1-valent (C1) and 0-valent (C0) configurations
- •Let the process p be the one with a different state across these two configurations C0 and C1.
- •Now consider the world where process *p* has crashed



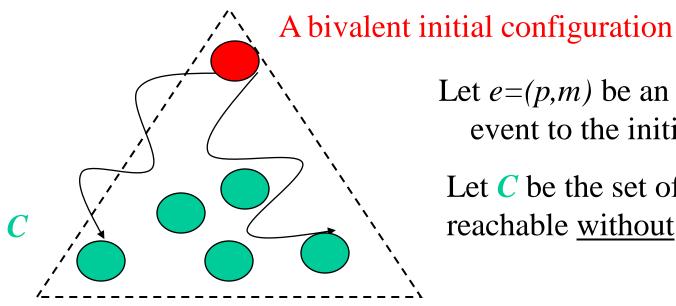
Both these initial configurations are *indistinguishable*. But one gives a **0** decision value. The other gives a **1** decision value.

So, both these initial configurations are bivalent when there is a failure

What we will show

- 1. There exists an initial configuration that is bivalent (Lemma 2)
- Starting from a bivalent configuration, there is always another bivalent configuration that is reachable

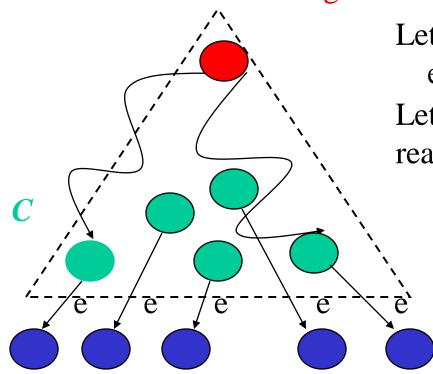
Starting from a bivalent configuration, there is always another bivalent configuration that is reachable



Let e=(p,m) be an applicable event to the initial configuration

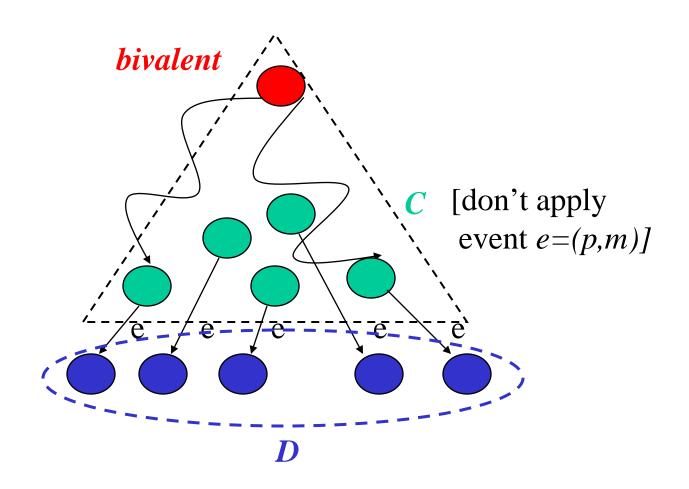
Let C be the set of configurations reachable without applying e

A bivalent initial configuration



Let e=(p,m) be an applicable event to the initial configuration Let C be the set of configurations, reachable without applying e

Let *D* be the set of configurations obtained by applying single event *e* to a configuration in *C*

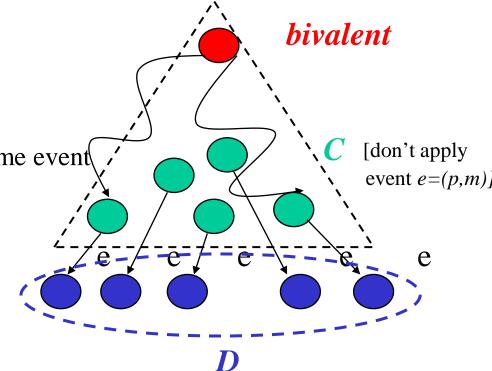


Claim. Set *D* contains a bivalent configuration

Proof. By contradiction.

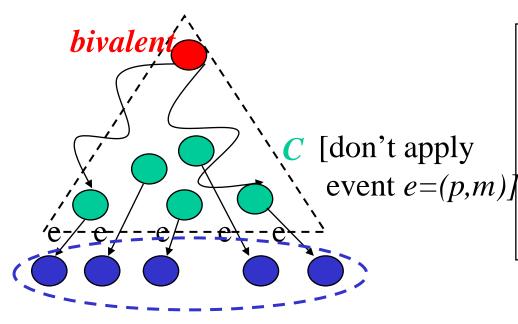
- suppose *D* has only **0** and **1** valent states (and no bivalent ones)
- There are states *D0* and *D1* in *D*, and *C0* and *C1* in *C* such that
 - *D0* is **0**-valent, *D1* is **1**-valent
 - D0=e(C0) followed by e=(p,m)
 - D1 = e(C1) followed by e = (p,m)
 - And C1 = e'(C0) followed by some event e'=(p',m')

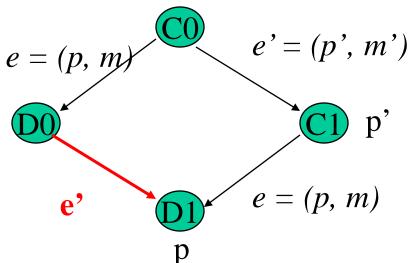
THEN By Lemma 1 follows: D1 = e'(D0)



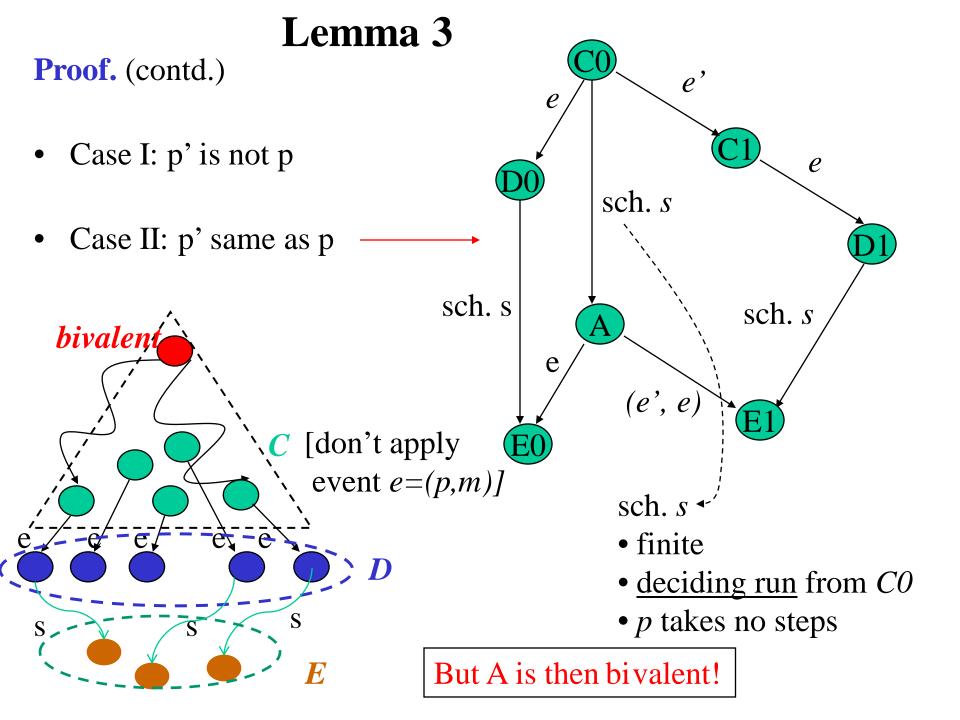
Proof. (contd.)

- Case I: p' is not p
- Case II: p' same as p





- •From C1 follows D1 is 1-valent
- •From Lemma 1 follows
 D1 = e'(D0), successor of
 0-valent configuration is 0-valent
 hence contradiction
- •D contains a bivalent configuration



Putting it all Together

- Lemma 2: There exists an initial configuration that is bivalent
- Lemma 3: Starting from a bivalent configuration, there is always another bivalent configuration that is reachable
- Theorem (Impossibility of Consensus): There is always a run of events in an asynchronous distributed system (given any algorithm) such that the group of processes never reaches consensus (i.e., always stays bivalent)
 - "The devil's advocate always has a way out"

Why is Consensus Important? –

Many problems in distributed systems are equivalent to (or harder than) consensus!

- Agreement, e.g., on an integer (harder than consensus, since it can be used to solve consensus) is impossible!
- Leader election is impossible!
 - A leader election algorithm can be designed using a given consensus algorithm as a black box
 - A consensus protocol can be designed using a given leader election algorithm as a black box
- Accurate Failure Detection is impossible!
 - Should I mark a process that has not responded for the last 60 seconds as failed? (It might just be very, very, slow)

Why is Consensus Important?

- The impossibility of consensus means there exists *no* perfect solutions to *any* of the above problems in **asynchronous system** models
 - In an asynchronous system, there is no perfect algorithm for either failure detection, or leader election, or agreement
- How do we get around this? One way is to design *Probabilistic Algorithms*

Summary

- Consensus Problem
 - Agreement in distributed systems
 - Solution exists in synchronous system model (e.g., supercomputer)
 - Impossible to solve in an asynchronous system (e.g., Internet, Web)
 - Key idea: with one process failure, there are circumstances under which the protocol remains forever indecisive .
 - FLP impossibility proof

Before you go...

- Next lecture Failure detectors: Read Sections 12.1 and 2.3.2
- H2 is out