

Periodic Task Scheduling

Introduction to Real-Time

Review

- Main vocabulary
 - Definitions of tasks, task invocations, release/arrival time, absolute deadline, relative deadline, period, start time, finish time, ...
 - Preemptive versus non-preemptive scheduling

 - Priority-based scheduling
 Static versus dynamic priorities
- Utilization (U) and Schedulability
 Main problem: Find Bound for scheduling policy such that
 U < Bound → All deadlines met!
- Optimality of EDF scheduling
 - $Bound_{EDF} = 100\%$

Schedulability Analysis of Periodic Tasks

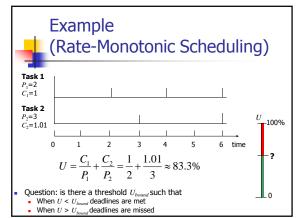
- Main problem:
 - Given a set of periodic tasks, can they meet their deadlines?
 - Depends on scheduling policy
- Solution approaches
 - Utilization bounds (Simplest)
 - Exact analysis (NP-Hard)
 - Heuristics
- Two most important scheduling policies
 - Earliest deadline first (Dynamic)
 - Rate monotonic (Static)

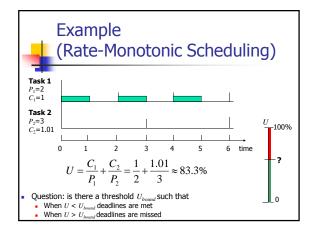
Schedulability Analysis of Periodic Tasks

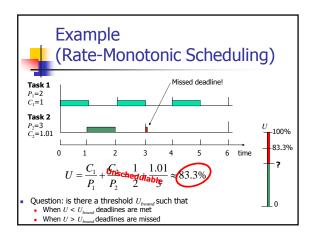
- Main problem:
 - Given a set of periodic tasks, can they meet their deadlines?
 - Depends on scheduling policy
- Solution approaches
 - Utilization bounds (Simplest)
 - Exact analysis (NP-Hard)
 - Heuristics
- Two most important scheduling policies
 - Earliest deadline first (Dynamic)
 - Rate monotonic (Static)

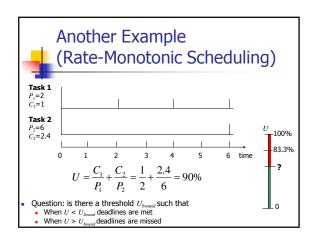
Utilization Bounds

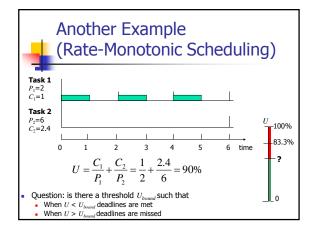
- Intuitively:
 - ullet The lower the processor utilization, U, the easier it is to meet deadlines.
 - The higher the processor utilization, U, the more difficult it is to meet deadlines.
- $\, \bullet \,$ Question: is there a threshold U_{bound} such that
 - $\qquad \qquad \textbf{When } U < U_{bound} \text{ deadlines are met}$
 - $\qquad \qquad \textbf{When } U > U_{bound} \, \text{deadlines are missed}$

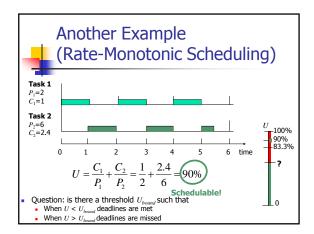


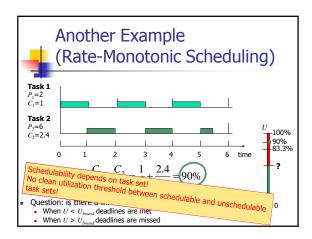


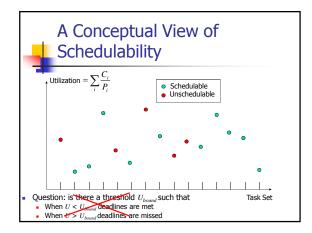


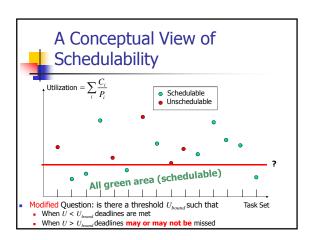


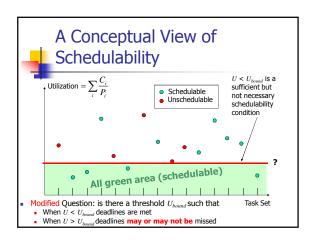


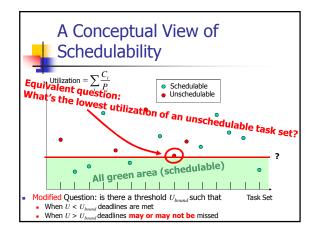


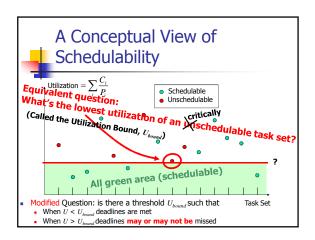


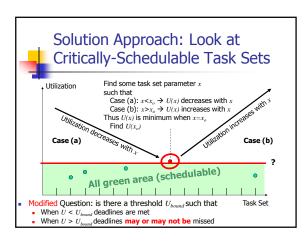












Deriving the Utilization Bound
for Rate Monotonic Scheduling

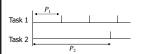
• Consider a simple case: 2 tasks

Find some task set parameter \boldsymbol{x}

Find some task set parameter x such that Case (a): $x < x_o \to U(x)$ decreases with x Case (b): $x > x_o \to U(x)$ increases with x Thus U(x) is minimum when $x = x_o$ Find $U(x_o)$

Deriving the Utilization Bound for Rate Monotonic Scheduling

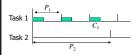
Consider a simple case: 2 tasks



Find some task set parameter x such that Case (a): $x < x_o \to U(x)$ decreases with x Case (b): $x > x_o \to U(x)$ increases with x Thus U(x) is minimum when $x = x_o$ Find $U(x_o)$

Deriving the Utilization Bound for Rate Monotonic Scheduling

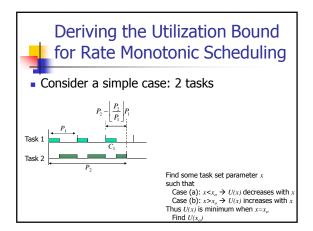
• Consider a simple case: 2 tasks

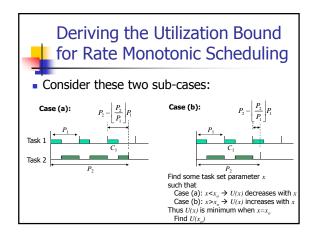


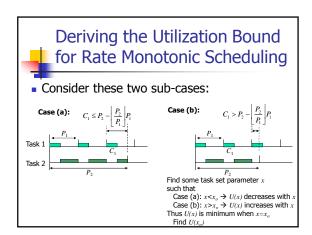
Find some task set parameter x such that Case (a): $x < x_o \to U(x)$ decreases with x Case (b): $x > x_o \to U(x)$ increases with x Thus U(x) is minimum when $x = x_o$ Find $U(x_o)$

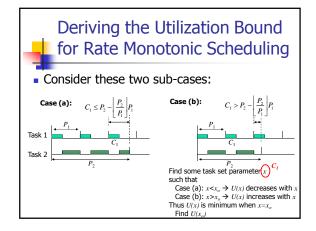
Deriving the Utilization Bound for Rate Monotonic Scheduling • Consider a simple case: 2 tasks Task 1 Task 2 Critically schedulable such that Case (a): $x < x_c \rightarrow U(x)$ decreases with x Thus U(x) is minimum when $x = x_o$ Find $U(x_o)$ is minimum when $x = x_o$ Find $U(x_o)$ is minimum when $x = x_o$

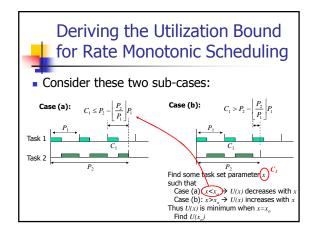


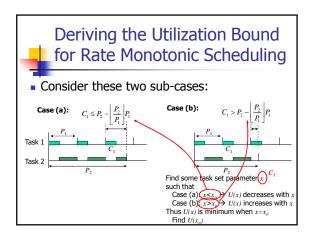


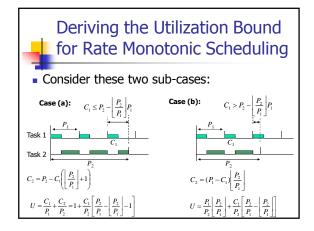


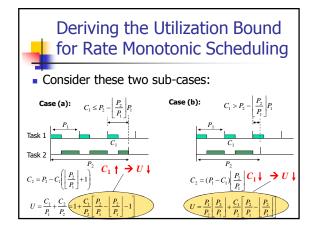


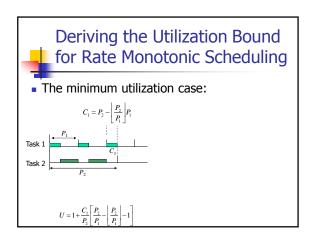


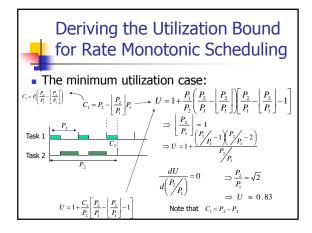












Generalizing to N Tasks

$$\begin{array}{c} C_1 = P_2 - P_1 \\ C_2 = P_3 - P_2 \\ C_3 = P_4 - P_3 \\ \dots \end{array} \right\} \qquad U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots$$

Generalizing to N Tasks

$$\begin{array}{c} C_1 = P_2 - P_1 \\ C_2 = P_3 - P_2 \\ C_3 = P_3 - P_2 \end{array} \right\} \qquad U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots$$

$$\frac{dU}{d\left(\frac{P_2}{P_1}\right)} = 0 \qquad \frac{dU}{d\left(\frac{P_3}{P_2}\right)} = 0 \qquad \frac{dU}{d\left(\frac{P_3}{P_3}\right)} = 0 \qquad \dots$$

Generalizing to N Tasks

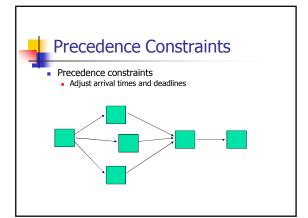
$$\begin{array}{c} C_1 = P_2 - P_1 \\ C_2 = P_3 - P_2 \\ C_3 = P_3 - P_2 \\ \end{array} \right\} \qquad U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots \\ \frac{dU}{d\left(\frac{P_2}{P_1}\right)} = 0 \qquad \frac{dU}{d\left(\frac{P_3}{P_2}\right)} = 0 \qquad \frac{dU}{d\left(\frac{P_4}{P_3}\right)} = 0 \qquad \cdots \\ \Rightarrow \frac{P_{l+1}}{P_l} = 2^{\frac{l}{l}/n} \qquad \Rightarrow U = n\left(2^{\frac{l}{l}/n} - 1\right) \end{array}$$

Generalizing to N Tasks

$$\begin{array}{c} C_1 = P_2 - P_1 \\ C_2 = P_3 - P_2 \\ C_3 = P_3 - P_2 \\ \end{array} \end{array} \qquad \begin{array}{c} U = \frac{C_1}{P_1} + \frac{C_2}{P_2} + \frac{C_3}{P_3} + \dots \\ \frac{dU}{d\binom{P_2}{P_1}} = 0 \qquad \frac{dU}{d\binom{P_3}{P_2}} = 0 \qquad \frac{dU}{d\binom{P_4}{P_3}} = 0 \qquad \dots \\ \Rightarrow \frac{P_{i+1}}{P_i} = 2^{\frac{1}{N_0}} \qquad \Rightarrow U = n \left(2^{\frac{N}{N_0}} - 1\right) \\ n \to \infty \qquad U \to \ln 2 \end{array}$$

Aperiodic Tasks

- What if tasks do not arrive periodically?
- Sporadic tasks
 - There is a minimum separation between successive invocation arrivals
 - Treat minimum separation as period
- Aperiodic tasks
 - Feasible region calculus

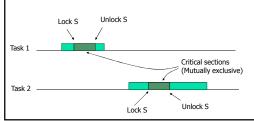


Processors and Resources

- In addition to the CPU, tasks may need resources
 - Memo
 - Dick
- Access to shared data structures
- etc
- Resource types
 - Space-multiplexed (e.g., memory: different tasks have different parts of the resource)
 - Time multiplexed (one task can access at a time)
 - Serial: Two tasks can't interleave their accesses (e.g., lock-protected data structures)
- How do resource constraints affect scheduling and schedulability analysis?

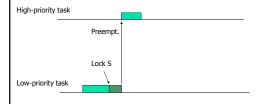
Mutual Exclusion Constraints

 Tasks that lock/unlock the same semaphore are said to have a mutual exclusion constraint



Priority Inversion

Locks and priorities may be at odds.
 Locking results in priority inversion



14

