

Energy in Data Centers

- Data centers account for 1.5% of total energy consumption in the US (Equivalent to 5% of all US housing)
 According to the U.S. EPA Report, 2007:
- The cost of energy already accounts for at least 30% of the total operation cost in most data centers.

According to BroadGroup (independent market research firm)

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

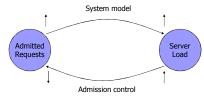
The Energy Optimization Problem

- Requires a holistic approach
- Local optimization of individual knobs is not equivalent to global optimization

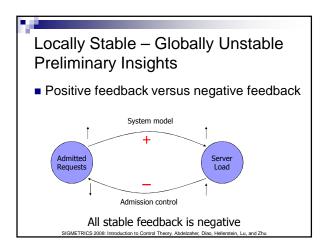
SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

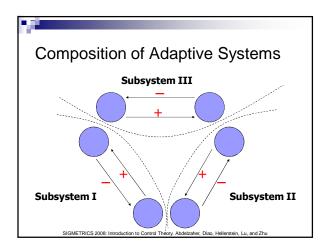
Problem: Composability of Adaptive Behavior

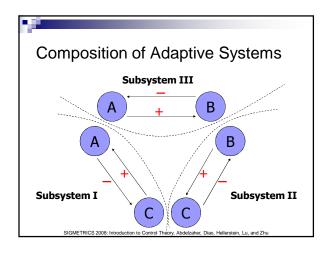
- Modern time-sensitive and performancesensitive systems are getting more complex
 - → Manual tuning becomes more difficult, hence: automation
 - → Automation calls for adaptive capabilities (e.g., IBM's autonomic computing initiatives) hence: adaptive components
 - → Emerging challenge
 Composition of adaptive components
 (Locally stable but globally unstable systems?)

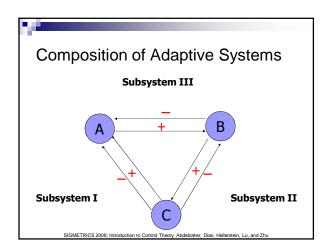

Locally Stable – Globally Unstable Preliminary Insights

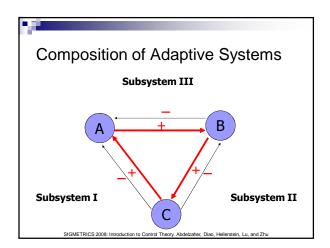
■ Positive feedback versus negative feedback


SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

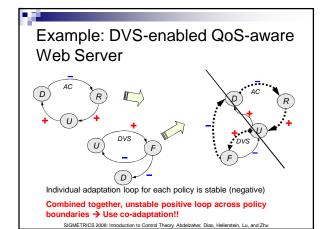

Locally Stable – Globally Unstable Preliminary Insights


■ Positive feedback versus negative feedback




SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Composability of Adaptive Behavior Many adaptive policies may perform well in isolation, but conflict when combined Example: DVS enabled QoS-aware Web server DVS policy and admission control policy (AC) + In an underutilized server, DVS decreases frequency, hence increasing delay AC responds to increased delay by admitting fewer requests Unstable cycle - throughput diminishes


Detection of Potential Conflicts: Introduction to Adaptation Graphs

- Adaptation graphs determine which adaptive policies conflict (if they do)
- Adaptation graphs
 - Graphical representation of causal effects among performance control knobs and system performance metrics
- A affects B: A → B
 - ☐ Changes in A cause changes in B
 - □ Direction of change (+, -)
 - Natural consequences or programmed behavior
 - The sign of a cycle: multiplication of the signs of all edges

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Adaptation graph for QoS-aware Web Server

Со	-adap	tation	Desigr	n Meth	nodology
		С	o-adaptatio	on	
	#	<u> </u>			
[feedback algorithm			feedback	algorithm
	Measurement (Sensors)	Resource Assignment (Actuators)		Measurement (Sensors)	Resource Assignment (Actuators)
Co- Out	adaptation	settings th	u to design a nat increases	shared co- utility	ftware componer
	nstrained o	ptimization	n (Necessary	condition)	+ Feedback

Co-adaptation Cont.

- Step1: Casting the objective
 - □ Find a common objective function minimize cost or maximize utility
- Step2: Formulating optimization problems
 - □ Decision variables: settings of adaptation "knobs"
 - □ Subject to two types of constraints
 - resource constraints
 - performance specifications

 $X_1,...X_n$: adaptation knob settings for policy I

 $\min_{x_1,\dots,x_n} f(x_1,\dots,x_n)$ $j=1,\dots,m$: resource and performance constraints

subject to $g_j(x_1, \ldots, x_n) \le 0, \quad j = 1, \ldots, m$

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Co-adaptation Cont.

- Step3: Derivation of necessary conditions
 - □ Lack of accurate model for computing systems
 - □ Augmented by feedback to move closer to the point that increases utility
 - $\hfill \square$ Use the Karush-Kuhn-Tucker (KKT) optimality condition

$$\mathbf{\Gamma}\mathbf{x_i} \longleftarrow \frac{\partial f(x_1,\dots,x_n)}{\partial x_i} + \sum_{j=1}^m \nu_j \frac{\partial g_j(x_1,\dots,x_n)}{\partial x_i} = 0$$

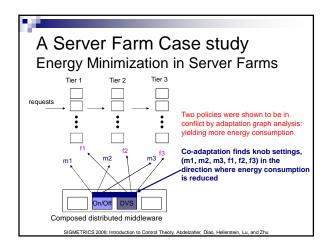
- □ Necessary condition $\partial x_1 = \ldots = \partial x_n$
 - Define $\partial x = (\partial x_1 + \dots + \partial x_n)/n$

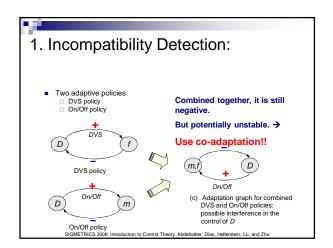
 $X_1, ..., X_n$: a set of adaptation knob for policy i

j = 1, ..., m: resource and performance constraints

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Ŋ.


Co-adaptation Cont.


- Step4: feedback control

 - \Box Try to meet the necessary condition $\Gamma x_1 = \ldots = \Gamma x_n$ by Hill climbing
 - \blacksquare Pick one with the largest or smallest value of Γx_{i}
 - Search through the neighboring knob settings (values of Xi)
 - \Box Reduce the error ($\Gamma x \Gamma x_i$)
 - Maximum increase in utility subject to constraints

X1,...Xn: a set of adaptation knobs for policy i

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhi

2. Design of a Co-adaptive Energy								
Minimization Policy								
Formulate constrained optimization								
$P_i(f_i) = A_i \cdot f_i^p + B_i$ Power estim	nation of a machine at tier i							
	equation using number of and arrival rate							
$P_i(U_i,m_i) = A_i \cdot \left(\frac{\lambda_i}{U_i m_i}\right)^p + B_i = \frac{A_i \lambda_i^p}{U_i^p m_i^p} + B_i \qquad \begin{array}{c} \text{Power estimation function} \\ \text{of a machine at tier i} \end{array}$								
$\min_{U_i \ge 0, m_i \ge 0} P_{tot}(U_i, m_i) = \sum_{i=1}^{3} m_i \left(\frac{A_i \lambda_1^3}{U_i^3 m_i^3} + B_i \right)$	Find best composition of							
$\begin{split} \min_{U_i \geq 0, \ m_i \geq 0} P_{tot}(U_i, m_i) &= \ \sum_{i=1}^3 m_i \left(\frac{A_i \lambda_i^3}{U_i^3 m_i^2} + B_i \right) \\ & \sum_{i=1}^3 \frac{m_i}{\lambda_i} \cdot \frac{U_i}{1 - U_i} \leq K, \end{split}$ subject to	(m ₁ , m ₂ , m ₃ , U ₁ , U ₂ , U ₃)							
$\sum_{i=1}^{n} m_i \le M$								
SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher,	Diao, Hellerstein, Lu, and Zhu							

Design of a Co-adaptive Energy Minimization Policy

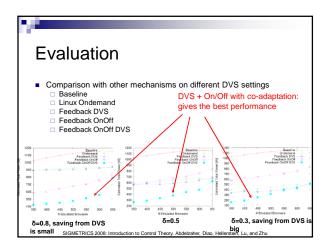
- Derive necessary condition for optimality
 - □Karush-Kuhn-Tucker (KKT) condition

$$\frac{\lambda_1^4 (1 - U_1)^2}{m_1^3 U_1^4} = \frac{\lambda_2^4 (1 - U_2)^2}{m_2^3 U_2^4} = \frac{\lambda_3^4 (1 - U_3)^2}{m_3^3 U_3^4}$$

$$\Gamma(m_1, U_1) = \Gamma(m_2, U_2) = \Gamma(m_3, U_3)$$

Try to find (m₁, m₂, m₃, U₁, U₂, U₃) tuple that balance the condition.

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu


Design of a Co-adaptive Energy Minimization Policy $\frac{\lambda_1^4(1-U_1)^2}{m_1^3U_1^4} = \frac{\lambda_2^4(1-U_2)^2}{m_2^3U_2^4} = \frac{\lambda_3^4(1-U_3)^2}{m_3^3U_3^4}$ $\Gamma(m_1,U_1) = \Gamma(m_2,U_2) = \Gamma(m_3,U_3)$

- Feedback Control
 - □ Goal: balance the necessary condition in the direction to reduce energy consumption
 - □ When delay constraint violated: Pick the tier with the most overloaded tier (the lowest $\Gamma(m_i, U_i)$)
 - \square Else: Pick the most underloaded tier (highest $\Gamma(m_i, U_i)$)
 - □ Choose (m_i, U_i) pair that makes the error within a bound and yields the lowest total energy
 - Error = Γ_x $\Gamma(m_i, U_i)$, where Γ_x is average of $\Gamma(m_i, U_i)$

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Evaluation on a Server Farm **Testbed**

- Energy minimization framework in 3-Tier Web server farms
 - □Web tier (Web servers), application server tier (business logic), and database tier
 - □Total 17 machines
 - □ Industry standard Web benchmark TPC-W

Conclusion

- Presented methods for composition of adaptive components
- Adaptation graph analysis to identify incompatibilities
- Co-adaptation design methodology for composition
- Web server farm case-study in the testbed with 17 machines

SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu

Questions?	
SIGMETRICS 2008: Introduction to Control Theory. Abdelzaher, Diao, Hellerstein, Lu, and Zhu	