

Turning Processors Off The Cost of Wakeup

- ullet Energy expended on wakeup, E_{wake}
- To sleep or not to sleep?

Turning Processors Off The Cost of Wakeup

- ullet Energy expended on wakeup, E_{wake}
- To sleep or not to sleep?
 - Not to sleep (for time t):

$$E_{no\text{-sleep}} = (k_v V^2 f + R_0) t$$

■ To sleep (for time t) then wake up:

$$E_{sleep} = P_{sleep} \; t + E_{wake}$$

Turning Processors Off The Cost of Wakeup

- Energy expended on wakeup, E_{wake}
- To sleep or not to sleep?
 - Not to sleep (for time t):

$$E_{no\text{-sleep}} = (k_v V^2 f + R_0) t$$

■ To sleep (for time t) then wake up:

$$E_{sleep} = P_{sleep} t + E_{wake}$$

■ To save energy by sleeping: $E_{sleep} < E_{no\text{-}sleep}$

$$t > \frac{E_{wake}}{k_{v}V^{2}f + R_{0} - P_{sleep}}$$

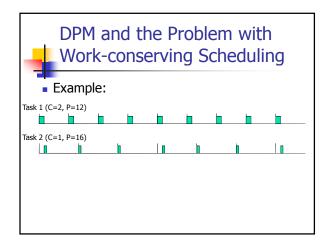
Turning Processors Off The Cost of Wakeup

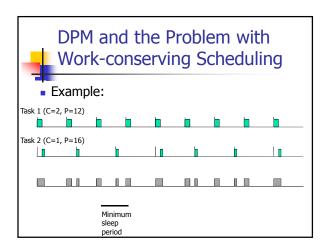
- Energy expended on wakeup, E_{wake}
- To sleep or not to sleep?
 - Not to sleep (for time t):

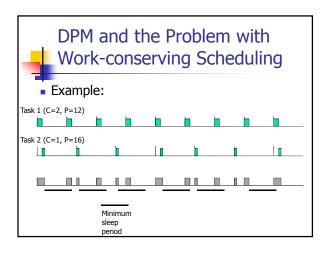
$$E_{no\text{-sleep}} = (k_v \ V^2 f + R_0) \ t$$

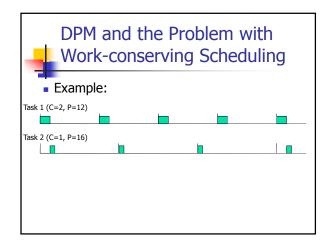
■ To sleep (for time t) then wake up:

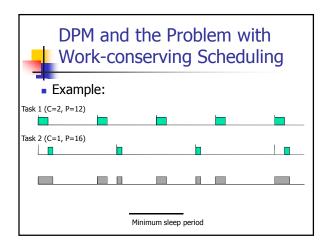
$$E_{sleep} = P_{sleep} t + E_{wake}$$

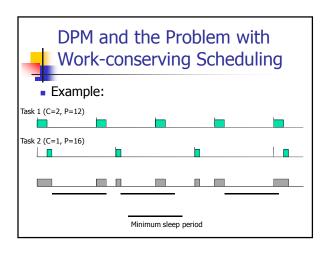

To save energy by sleeping: $E_{sleep} < E_{no\text{-}sleep}$

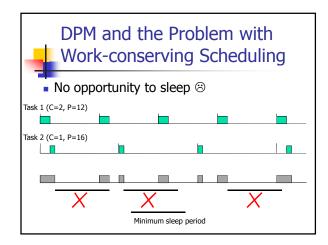

$$t > \frac{E_{wake}}{k_v V^2 f + R_0 - P_{sleep}}$$

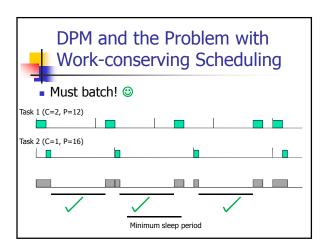


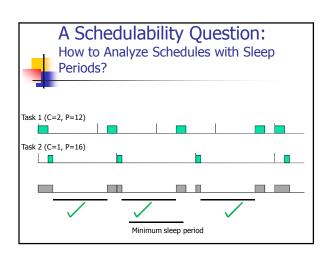

Dynamic Power Management

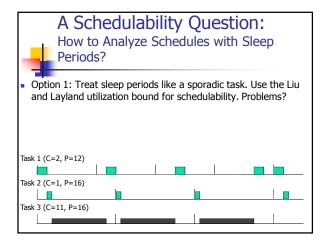

- DPM refers to turning devices off (or putting then in deep sleep modes)
- Device wakeup has a cost that imposes a minimum sleep interval (a breakeven time)
- DPM must maximize power savings due to sleep while maintaining schedulability

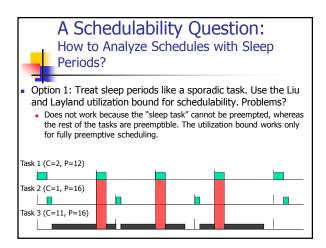


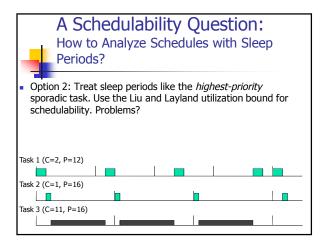


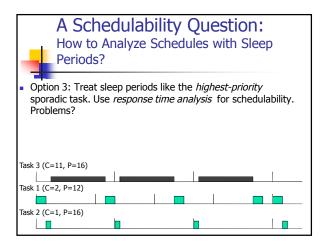


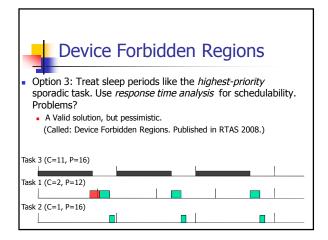












A Schedulability Question: How to Analyze Schedules with Sleep Periods? • Option 2: Treat sleep periods like the highest-priority sporadic task. Use the Liu and Layland utilization bound for schedulability. Problems? • Does not work because the "sleep task" may need to have a larger period than the actual top-priority task, which contradicts ratemonotonic scheduling. The bound does not work. Task 1 (C=2, P=12) Task 2 (C=1, P=16) Task 3 (C=11, P=16)

DVS on Homogeneous Multiprocessors

- Consider a set of tasks, where task i has period P_i and total number of cycles C_i
 - Sort tasks from largest to smallest utilization C_i/P_i
 - Assign tasks one at a time (largest-first) to the least utilized processor
 - Apply one of the previous algorithms on each processor separately

Question

From the perspective of minimizing energy, is it always a good idea to use up all processors?

How Many Processors to Use?

- Consider using one processor at frequency f versus two at frequency f/2
- Case 1: Total power for one processor
 k_f f³+R₀
- Case 2: Total power for two processors
 - $2 \{k_f (f/2)^3 + R_0\} = k_f f^3 / 4 + 2 R_0$

How Many Processors to Use?

- Consider using one processor at frequency f versus two at frequency f/2
- Case 1: Total power for one processor
 k_f f³+R₀
- Case 2: Total power for two processors
 - $2 \{k_f (f/2)^3 + R_0\} = k_f f^3 / 4 + 2 R_0$
- The general case: *n* processors
 - $n \{k_f (f/n)^3 + R_0\} = k_f f^3 / n^2 + n R_0$

How Many Processors to Use?

- The general case: *n* processors
 - Power = $n \{k_f (f/n)^3 + R_0\} = k_f f^3 / n^2 + n R_0$
 - $dPower/dn = -2 k_f f^3/n^3 + R_0 = 0$

$$n = \sqrt[3]{\frac{2k_f f^3}{R_0}}$$

How Many Processors to Use?

- The general case: *n* processors
 - Power = $n \{k_f (f/n)^3 + R_0\} = k_f f^3 / n^2 + n R_0$
 - $dPower/dn = -2 k_f f^3/n^3 + R_0 = 0$

$$n = \sqrt[3]{\frac{2k_f f^3}{R_0}}$$

What if n is not an integer?

Advanced Configuration and Power Interface (ACPI Standard) C-states (idle states) P-states (dynamic voltage and frequency scaling)	
Turning a Processor Off	